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1.0 INTRODUCTION, SUMMARY, AND PROPOSED MODEL

1.1 INTRODUCTION

This document reports an investigation performed to provide the information for improved
accuracy of low-altitude wind and turbulence models to be used for the certification by
flight simulation of approach and landing guidance and control systems.

Historically, the structural designers were first to recognize the requirement for a
mathematical model and initially used only the discrete 1-cosine gust for the design limit
case. As airplanes became lighter and more flexible, fatigue life became more critical and the
need for a more accurate description became greater. This led to the application of the
statistical power spectra. Attempts to fit a mathematical model to measured data began
seriously in the late 1950s and has progressed to the point of “which model do I use?”

Automatic controls were used initially to provide modest improvements of airplane stability
and to provide guidance during noncritical flight phases (altitude, attitude, and heading
hold). Automatic contiol authority tended to be low. Hence, the interaction of the control
system with wind and turbulence was unimportant; it was not a concern for flight safety.

For typical flight controls analysis, such as handling qualities, ride qualities, and
controllability, concern was for a qualitative, rather than quantitative, answer: that is, does
a parameter variation (ia the aircraft or control system) improve or degrade the particular
output? A forced change of this philosophy occutred when the autoland systems began to
appear in the early 1960s. The dependence upon an automatic landing system rather than
the highly adaptive pilot required analytic proof that the landing would be performed with
adequate safety. The problem is now quantitative rather than qualitative and a gross error in
the approach wind model could be very serious; parameters of the wind model have effects
comparable to parameters of the aircraft and guidance system. Certification of autoland
systems is dependcnt upon demonstration of very low oilers of risk of fatal accidents.
Obtaining adequate statistical data to validate remote probabilities of fatal accidents is
impractical without heavy reliance upon simulation.

The search for a low-altitude wind mcdel, providing a batter representation of low-altitude
wind phenomena than provided by existing certification wind models, was principally
concerned with the region from the surface to about 1000 feet. The model for this altitude
region tends to be the most general and complex due to the strong dependence of wind
characteristics upon altitude and surface terrain and the orientation dependence of
turbulence characteristics. Additionally, the landing approach task is the most difficult and
critical task for which relatively small changes of wind characteristics may result in large
changes in maneuver performance. The low airspeed during approach tends to couple
vertical motion with longitudinal wind components and longitudinal motion with vertical
wind components, increases the nonlinearity of aircraft responscs to winds, and increases
the significance of the distribution of winds over the aircraft. Hence, the aerodynamic
modei incorporating the effects of winds tends also to be most general and complex.
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The main objective of the investigation was to define a model suitable for certification. A
model for design must be simplified to reduce the wind model parameters to enable
evaluation of a large number of aircraft and control system design parameters.

The studies were concerned with the “average” airport, although it is recognized that the
“average” airport may not exist. It is both impractical and undesirable to represent unique
characteristics of any particular airport for the certification of an aircraft that will land at
many different airports. “Average” airport is used in regard to possible unique operating

procedures and terrain features and does not imply “average” winds at the “average”
airport.

A Y T R T 4 TR AR T A

Consideration is not for the wind alone, but for aircraft responses in wind environments, so

the investigation included the representation of aerodynamic forces due to winds and a brief
analysis of the effects of winds on aircraft motion.

Ll R T

No original work on the description of low-altitude winds is intended. The wind model is a
co.nbination of the work of others. The structure of the model has been parameterized to

eaable incorporation of new material and updating of parts without discarding the entire
model.

T o R « TR

For virtually every aspect of low-altitude winds there are conflicting descriptions. Some
) descriptions are based on undocumented data collection, analysis techniques, and test

conditions. Some general considerations used for selecting one among competion descrip-
tions are:

TEP T a

TR

TR P

e Weight of evidence

®  Physical and intuitive reasonableness
® Substantiation

e  Existing specifications, when the choice appears arbitrary ;

- e Compatibility with the description of other parameters

® Validity of the asrumptions

TR TR T T AT

® Avoidance of descriptions providing unreasonable discontinuities

Analytic descriptions of wind phenomena are presented. Where possible, a deterministic
description is preferred in the presumption that all physical processes have cause-and-effect
relationships. When relationships are too complex to permit quantitative understanding or

when deterministic descriptions are impractical, probabilistic descriptions are used, with the
statistical paramcters defined deterministically as much as possible.
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For those parameters detying analytic description, probabilistic descriptions have been
sought. Probabilistic descriptions were {irst sought from the literature, For those aspects not

well defined by the literature, descriptions have been sought by reducing and evaluating
tower data,

A brief analysis of the effects of winds on aircraft motion has been conducted to gain an
appreciation of what needs to be modeled. The axes transformations required between wind
and turbulence components in their inherent axis system and in the airplane’s axis system
are shown. Techniques of providing a rundom process on computers for the representation

of turbulence are presented. A simulation model is presented that combines all the foregoing
components.

Each section has been designed to be relatively independent of the other sections, Each

section has its own nomencluture and reference list, and tables and figures are numbered by
section,

1.2 NOMENCLATURE
b Wing span
(‘p Specific heat at constant pressure
< Mean chord
d Atmospheric boundiry layer thickness
¢ Exponential function
f Corolis parameter, = 2w i sin A
fth/e

Contribution of nonncutral atmospheric stability to the mean
wind

() gt) Fundumental longitudinal and transverse correlation tunctions

for isotropic turbulence, respectively

Gy Gy Gy, Filters for producing u. v, and w components of turbulence

¢ Acceleration due to gravity

e(h/e')

Contribution of atmospheric stubility to mean wind caused by
variation of shear stress

Heat flux, positive upward

Altitude
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PT
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Reference altitude

Altitude above which turbulence is isotropic
Von Karman constant, k = 0.4

Longitudinal isotropic turbulence integral scale

Integral scales for horizontal uand vertical turbuience
components

Longitudinal and transverse integral scales for turbulence com-
ponents paraliel and normal to the displacement vector,

respectivly

Integral scales corresponding to the longitudinal, transverse, and
vertical turbulence components, respectively

Monin-Obukov scaling length and Monin-Obukov scaling length
modificd by ritio of eddy conductivity to eddy vicosity

Distance from the wing-body aerodynamic center to the tail
acrodynamic center along the x body axis. positive aft

Frequency response amplitude
Inertial body axis roll rate

Effective roll rate of the air mass due to turbulence relative to
the carth

Inertial body axis pitch rate
Dynamic pressure

Eitective body axis pitch rate due to turbulence with respect to
the corth

Richardson’s number and that at 20-foot altitude
Correlation tunction for the i and j turbulence components
Inertial body axis yaw rate

Displacement vector

Yaw rate relative to the air mass
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Vw- V2o
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\V

YA

v.l.. v.l-.r(;

Vw. \'w

Effective body axis yaw rate due to turbulence relative to the
varth

Effective yaw rate due to the wind and mean wind relative to
the carth

Laplace transform variable
Absolute temperature
Time

Inertial linear velocity along the x body axis

Friction velocity (shear strcss/dcnsity)l/‘ and that at the 3
surfuce
Linear velocity with respect to the air mass along the x body
axis
3

Component of airspeed along the x turbulence generation axis

Turbulence velocity parallel and normal to the displacement
vector

Linear turbulence wvelocity along the x body axis and the
X turhulence generation axis relative to the carth

R % 1 K P e &

W at the tail ’

Linear velocity of the wind and rrean wind with respect to the
carth along the x body axis

Mean wind saced and that at 20-foot altitude
Total air speed
Inertial lincar velocity along tae v body axis relative to the carth

Lincar velocity with respect to the air mass along the y body
axis

Lincar turbulence velocity along the y body axis and the
y turbulence generation axis relutive to the carth at the center of
gravity

Lincar velocity of the wind and mean wind along the y body
axis relative to the carth
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Inertial linear velocity along the 2 body axis
Linear velocity along the z body axis relative to the air mass

Linear turbulence velocity along the £ body axis relative to the
carth

Lincar velocity of the wind and the mean wind along the 2 body
axis relative to the earth

Surface roughness length
Angle of attack

Sideslip angle

Glide slope

Euler pitch angle

Three-dimensional spectrum function for the i and j turbulence
components

Latitude

Turbulence wavelength along the x and y axes

Position displacement vector and magnitude

Standard deviation for parameter i

Standard deviaticn of horizontal and vertical turbulence

Standard deviations of the u, v. and w components of
turbulence

Covariance between the i and j turbulence components
Time displacement

Shear stress and that measured at the surtace

Input and output power spectra

One-dimensional power spectrum for parameter i

One-dimensional spectrum function for the i and j tusbulence
components
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3
gi
by
< by Random noise power spectrum
;

ONNISZ)), Ppp(S2))

Isotropic one-dimensional spectrum functions for uy and up

gusts. Mean wind and turbulence are statistical param-ters that appear together with
turbulence being a random deviation of wind velocity about the meun. Distinction between
the mean wind, which eventually is variable given enough time or space. is made on a
frequency basis using the Van der Hoven bimodal wind speed spectrum (Fig. 1-1),

Discrete gusts ure deterministic phenomena caused by localized terrain or atmospheric
inhomogeneities of which there are an infinite number of possibilities. So long as conditions
of reasonably homogencous terrain and  atmospheric features or restrictions on the
proximity to inhomogeneities are justified, consideration of discrete gusts is unnecessary.

£

i $,(82)), D(82)), ®,(§2)) One-dimensional power spectra for components of turbulence
E‘ along the x, y, and z axes

duwif2y) One-dimensional cospectrum  for components of turbulence :
E

£ along the x and z axes

;

E oih/e’) Universal function of h/2' defining nondimensional wind shear:
kh AVw

ool THIRAAUAR

b *0

E

3 ¢ Euler bank angle

wij(ﬂl,ﬂ 2) Two-dimensional spectrum function for the i and j turbulence
components

E‘ ' Euler heading angle

g .&W Heading to which the mean wind is blowing

£

Ej‘, I3
£ ﬁ, Q Spacial frequency vector and spacial frequency magnitude ;
; ? QI Component of spacial frequency along the x axis

; w Temporal frequency, rad/sec

; WE Angular velocity of the carth

£

3

E Note: Dotted terms refer to derivatives with respect to time. Overbur indicates an average.
g Other terms defined where used.

£

E

E 1.3 SUMMARY

g Wind phenomena are classified in Section 2.2 as being mean wind, turbulence, and discrete
§
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1.3.1 Mean Wind

The mean wind is characterized by:
e  Zero vertical component

@  Zero wind speed at the surface

o Invariant with altitude above the atmospheric boundary layer

The mean wind model having the greatest acceptance, both theoretically and empirically, is
that developed from dimensional analysis. The parameters involved are:

av

3n - mean wind shear

T = shear stress

p = atmospheric density

(‘p = specific heat at constant pressure

h = altitude
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= gravitational acceleration

= heat flux

= absolute temperzture

%l = lapse rate

This inclusive list assumes:

o Pressure gradients are invariant with altitude, at least over a sufficiently
constrained zltitude region.

® Viscous forces dowmsinate pressure and Coriolis forces.

Ly

e The flow of air is fully rough so that molecular viscosity is not a significant
parameter,

The parameters appear in the combinations

AT .
u, =V 5 = friction velocity

Mol

kh Vw dimensional shed
Uy bh aondimensional shear

R

7
BRSO

(k = 0.4 = Von Karmaun's constant)

4 ungPT
& = T keH

i

A

Dimensional analysis then predicts

L khw .
: Tl: -5}.1— -¢(h,2i)

where (h/f) is some specific function,

It is additionally assumed that shear stress and density are invariant with altitude for a
sufficiently constrained altitude region. Then
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where

20 the altitude at which the mean wind speed formally goes to zero
Ueg = u,(h=0)

The scaling length, £, is difficult to measure due to the difficulty of measuring heat flux, so
an alternate scaling length, €', is introduced:

This alternate scaling length is equal to the dimensional analysis scaling length multiplied by
the ratio of eddy conductivity to eudy viscosity and is assumed to be a constant, implying
that there is a one-to-one relationship of the wind and temperature shears independent of
altitude.

The alternate scaling length can be related to a more conventional and still more easily
meusured parameter reflecting atmospheric stability, Richardson’s number:

s
| ( dh )
h %(n +tli’_) {xn 3V

b
"

i it LA B
[ (avw)" u*o oh | i #/)
h

Richardson’s number is a nradimensional ratio between the mechanical wind shear that
tends to displace air and the buoyancy force, which may damp or amplify this tendency
{Sec. 2.3.4). Richardsorn's number thus gives rise to the notion of atmospheric stability, a
dynamic concept:

R, Wt >0 g—T > -ég-: stable (wezk lapse or inversion)

p
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Ry we =0- L = & = 0,00536°R/ft: neutral (adiabatic lapse)
p
R W2 <O0-» %}1{ < i:&:unstuble(strong lapse)

p

Given the nature of ¢(h/2'). the variatimn o Ri is known with altitude and R; could be used
in place of h/f'. However, it is simpler 10 use b/ as it varies linearly with altitude The
greater ease involved in measuring R; provides an indirect means of computing ',

Investigators have examined ¢(h/2") tor different regions of stability. For neutral stability
o/ =1 and

_ U,
Vw0 m(-“—-) (Sec. 2.3.2)

For neutral stability, the shear is inversely proportional to sititude and the mean wind is
described by the logarithmic profile. The term 2 reflects surface roughness and is larger for
greater roughness. The relationship between ) and roughness of the terrain has been
investigated in Section 2.3.2.2. In Section 2.3.6, it is concluded that 2 = 0.15 foot, us
provided by the British specification, and is representative for autoland applications.

If the mean wind, Vg is known at some altitude, hp g, the friction velocity, Uggye MatY
be found from the equation for the meun wind profile:

kV o1
g = RE]

hppr+7
0 In RL.I 0
“0

For a given wind speed at h REF an increase in roughness length, 7. is related to an increase
in friction velocity, which in turn provides an increase of the shear at every altitude, a
decrease in wind speed for h < hggp. and an increase in wind speed for h > hpgg.
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For near neutral stability, ¢(h/2') may be estimated from the first two terms of a Taylor
series expansion about neutral stability:

d(h/2) = 1+a'lyf, U<
a' = constant
Thus,
-~ Usgl [ht2zg ,
Vw = T[ln( % ) +a'h/fl] (Sec. 2.3.4.2)

which is the log-lincar mean wind profile. For stable conditions (h/2'>0), the effect of
stability appears to cause an increase in the mean wind speed and shear. Unstable conditions
appear to cause a decrease in the shear and mean wind speed.

For the log-linear profile, friction velocity can be determined from the mean wind speed at a

given altitude by

) kVREF

Ux =
0 h+z
In( Zo 0) + a'!;REF/Q'

Stable conditions result in a decrease and unstable conditions result in an increase of friction
velocity.

b
Combining the effects of stability on friction velocity and the nondimensional wind shear
gives

Vy _ VRer L+ b8’
oh h hpep tz
In( REF 0) + a'hREF/Q'

Stable conditions cuause the shear to be greater than for neutral conditions above some
altitude, but less than the neutral stabiiity shear below that altitude. The reverse is true for
unstable conditions.

For near neutral stability, the constant ' can be determined by knowing Richardson’s
number at some altitude, hggf:

W' = Ri#(h/2)= Ri(l +a'h/2), h/R'<< |
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The general form of the mean wind profile may be reformulated to represent the
contribution of neutral conditions plus the increment due to nonncutral conditions:

- Uxg h+ 20 .
Vw=-k— In( o ) + {(h/2")
where
h
ey = f 981y

0

Different investigators have developed expressions for the mean wind shear for various
regions of stability (Sec. 2.3.4.3.). For unstable conditions,

1 .
oh/e) = . small negative R,
I- B'R; ‘
B’ = constant

v
—W ~ 14/3
2h h

A form that matches the logarithmic, log-lincar, and the above two expressions is the
KEYPS equation:

, strong instability.

by =—L— R, 0
(1-7R)A

Y= 28" = 4a' = constant

This form has been adopted in Section 2.3.5 along with the ¥'= 18, which implies a’ = 4.5,
values in good agreement with measurements. The corresponding relationschip between
nondimensional altitude and Richardson’s number is

: R
he'= -
(1-7'R)A

An cxplicit expression for the mean wind shear and, consequently, the mean wind speed in
terms of h/’ cannot be found, but such a relationship can be determined numerically.

N 7 o au s e ., Bt o BRI e e L G S S i R "'ﬁ

w#

4
‘%

MIALAL

=~
P
.
e
%
R
E
i
2
K

Ln

ELTW LI




AR et e AN H S Gt R B A S SR Wit beicis o r 8 S8 S AT € £ 04 A T T A T R TN TR =S N T T 58k

: £ T D P S P P ——— —
3 ) ‘:
: ;
|
For stable conditions, the log-linear relationship has been found to hold for suprisingly lurge

g vilues of h/f': for very stable conditions, knowledge is poor. The best expression found for

EE very stable conditions is

4 $(h/2) = (1 +a’)

which once again results in a shear inversely proportional to altitude. The corresponding

s mean wind profile is

5}; h + ! 1]

Vw———- ln +o [l +ln(h/Q')I U >

- For h/R' > 1, Richardson’s number and nondimensional aititude are related by

b2 = (1 +a")R;

4 ]

E ! Combining the descriptions of #(h/2') adopted provides the noudimensional shear as a

E f function of h/2', as shown in icures 1-2 and 1-3. The corresponding function f(h/f’) for

5" the mean wind cquation is shown in Figures 14 and 1-5. The combined relationships

b between h/f' and R; are shown in Figure 1-6.

E The wind above the edge of the boundary layer (geostrophic wind) is that which remains

invariant with surtace conditions and atmospaeric stability in the boundary layer. There are
little data on geostrophic winds, and relationships between winds near the sutface and above
the boundary layer are poor. Rather than relating low-altitude wind conditions to the
geostrophic wind, the wind profile is extrapolated tfrom low-altitude winds. The American
standard for airport wind measurements is 20 feet. The extrapolation of winds and shears
based on wind speeds at 20 feet is performed through the determination of friction velocity:

R dulte

TR T 5T

g i

Vag

30.15
In(<5:3 ,5)+"hnu=/9 )

TETI

“*O/k = (Fig. 1-7)

Figure 1-7 shows iriction velocity to continuaily decrease for increasing stability. The
nondimensional shear, Figures 1-2 or 1-3, is constant for /2" > 1. Thus, the shear, given by

¥y Vs 0("*o/k) (kh Ww) ,

Toh " h Vo F:O-aT‘-

must decrease for h/g’' > 1.
The scaling length, 2', may be determined for Richardson’s number measured at another

altitude different from 20 feet. but since the choice appears arbitrary. 1/2' is determined
from Figure 1-0 for Richardson’s number measured at 20 feet. The description provided

14
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FiGURE 1-2—~ SELECTED NONDIMENSIONAL SHEAR DESCRIPTION

thus far still suffers from a restriction: the dimensional analy:as descriptions are valid only
over the altitude region for which shear stress differs insignificantly frc n that at the surface.
Insignificant variations of the shear stress have been variously estimated to occur up to 65 to
650 feet (sec. 2.3.2.4), significantly less than the objective of 1000 teet. At progressively
higher aititudes, a progessively greater overestimation of the mean wind speed and shear
occur; the description of the mean wind never does provide a constant mean wind with
altitude above the boundary layer. A mechanism for adjusting the description has been

found through descriptions of shear stress (friction velocity) variations throughout the
boundary laye: in Section 2.3.5.1.

By expanding shear stress with altitude about conditions at the boundary layer (where shear

stress is zero) using a Taylor series, expressions for friction velocity variations with altitude
and for the boundary layer depth, d, are developed:
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FIGURE 1-7.— MEAN WIND PROPORTIONALITY CONSTANT
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Usx = u*O(l-h/d)
d = us /5351 g
*0/ ;
where :
f = Coriolis parameter ;
= Qwgsind
wg = angular velocity of the earth
A = [atitude

Most of the United States and a majority of the world airport activity lies between 30%and
50° latitude, so a fixed latitude, A = 40° is adopted for determining the boundary layer
depth, Then,
d=2000u
*o
To incorporate the shear stress variation into the mean wind description, the assumption

that the shear is proportional to friction velocity at the surtace is dropped, and it is assumed
that the sheur is proportional to the local level of friction velocity. Then,

avW-_w /Q' l u*o E_avw
oh  kh 0 kh \us oh

V Ux / K v
- ( )_‘g khOVw
I Vo /\ux oh
The shear now smoothly decreases to zero at the edge of the boundary layer with increasing
altitude. Near the surface, where h/d 2= 0, the constant shear stress model is unaffected.
The corresponding expression for the mean wind speed, developed in Section 2.3.5.2, is

- _ Ut /k) h+z0 h
Vy = V:o( Voo In( 0 )+f(h/2')-38(h/2')J

The function g(h/2’) (Fig. 1-8) is derived from f(h/R'). It is always positive, is ¢ -ual to one
for neutral stability, and increases with increasing stability.
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The additional parameters required to complete the description of the mean wind speed and
mean wind shear are specifications for wind speed and Richardson’s number at a 20-foot
altitude. Probabilistic descriptions are developed in Section 3.0.

Based on Weather Service reports at U.S. airports, a desctiption of airport wind speeds has
been developed in Section 3.2 that describes 10-minute averages measured cach hour for 10
years, The data were taken prior to establishing 20 feet as a standard anemometer height, so
anemometer heights varied widely from airport to airpori. From data for 132 U.S. airports.
data were selected from 24 sites where anemometer heights varied from 20 to 35 feet with
an average height of about 26 feet. The remaining sites have anemometers located from
above 35 to 120 feet above the ground and were considered to be too high to represent
wind speeds at 20 feet. In developing a composite description for all 24 airports, the
distributions from each site were weighted cqually. The resulting descriptions. Figure 1-9.
provide for 8 knots exceeded S0% of the time and 22.8 knots exceeded 1% of the time. For
39 of the sume 132 sites, data for the wind speed distribution when visibility was less than
0.5 mile (prepared by the Weather and Flight Service Station Branch of the FAA) are
presented. For low visibility, wind speeds are much lower than for clear conditions, for low
visibility, 4.5 knots is exceeded 507% of the time and 14 knots is exceeded 194 of the time.

From the data tor the 24 U.S. airports, distribution of wind components along and across
runways were developed, assuming the runway is aligned to the prevailing wind (Secs.
3.2.1.3 and 3.2.1.4). Crosswinds from the left and right were found to be equally likely. The
distribution of crosswind magnitude, Figure 1-10, provides for exceeding a 5-knot crosswind
50% of the time and a 19-knot crosswind 1% of the time. When the distribution of
crosswinds are plotted for both positive and negative crosswinds, the distribution is closely
Gaussian (standard deviation equal to 6.5 knots), with deviations from o Gaussian
distribution occurring in the tails (1.65 standard deviations from zero crosswind).

The distribution of down runway components is also closely Gaussiun (Fig. 1-11) with a
mean and standard deviation of 1 and 7 knots, respectively. The probability of 2 wind
component in the direction of the prevailing wind is 59%. The distribution tor the
magnitude of the component of mean wind aligned to the runway (Fig. 1-12) provides for §
knots exceeded 50% of the time and 19 knots exceeded §% of the time.

Distribuiion of mean wind shears were also investigated in Section 3.0. Distributions were
much broacer near the surface than at higher altitudes. contforming to the analyiic
description The introduction of atmospheric stability into the mean wind description in
such a way that wind shears increase with increasing stability (up to a point), as well as with
wind speed and the finding that atmospheric stability is inversely related to wind speed,
introduce contusion as to whether maximum shears occur at high wind speeds where
stability is close to ncutral or at low wind speeds where stability is high. Data from the
literature, presented in Section 3.2.3.1, show the greatest shears oceur at the most stable
lapse rates and at low wind speeds (both average and maximum wind shears decrease
monotonically with increasing wind speeds at high wind speeds). contlicting with commonly
employed wind models that assume neutral stability and increuasing shears with wind speed.
thus emphasizing the importance of atmospheric stabilitv s« 2 stican wind parmmd ter.
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FIGURE 1-10.—TOTAL CROSSWIND INFORMATION COMPILED FROM
24 U.S. AIRPORTS

The literature was not prc-uctive for describing distributions of atmospheric stability, so
probability distributions were gencrated by reducing data from towers located at Cedar
Hills, Texas, and Cape Kennedy, Florida (See. 3.3.3.). The distributions for the two sites
differed substantially (Fig. 1-13), with the Cedar Hills data being more stable. Evaluation of
the climatology and wind characteristics of the two sites led to the conclusion that the Cape
Kennedy stability data were more represcntative of average airport conditions. Conse-
guently, the Cape Keanedy data were selected for use with the model. Although the Cape
Kennedy data reflected the lesser stability over 70% of the cases at the site were stable
(versus 907 of the cases at Cedar Hills),

The strong interdependence between the  distribution of atmospheric  stability and
near-surface wind speed can be seen in Figure 1-14. Although the atmospheric stability
distribution narrows substantially about neutral conditions at increasing wind speeds, the
distribution remains significantly broad at high wind speeds. The data in Figure 1-14 were
Faired and extrapolated to account for the relatively small data sample (one site tor 3 years
with ncar-calim wind speed conditions excluded) and have been cross plotted at constant
20-foot-altitude wind speeds in Figures §-15, 1-16, and 1-17,
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The mean wind speed and atmospheric stability distribution curves may be used by i
(1) defining wind speed/stability regions and assigning average values of wind speed and \
Richardson’s number to cach region: (2) by simulating the aircratt for cach wind
speed/Richardson’s number combination: and (3) by combining the results of the simulation
according to the joint probabilities of each region. Alternatively, the simulation may be used
to define rundom combinations of mean wind speed and Richardson’s number. A random
number generator, providing a uniform distribution between zero and one, is used to
determine two random numbers. A mean wind speed at an exceedance probability equal to
one of the random number generators is found. The Richardson’s number associated with
the exceedance probability for the mean wind speed determined equal to the second
random number is found. The Richardson’s number and mean wind speed then determine
the mean wind speed and shear profiles. When this process s repeated, the joint distribution
of wind speed and Richardson’s number is reproduced. This procedure is defined in more 3
detail in Section 4.5.1. b
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In order to determine the aerodynamic forces and moments, the mean wind must be
resolved into body axis components, an axis system attached to the airplane. The
transformation required is presented in Figure 1-18 and depends on the orientation of the
airplane’ body axis with respect to the wind, defined by the Euler yaw, pitch, and roll
angles and the direction to which the wind is blowing (negative of conventicnal wind
heading). The introduction of wind heading presents an additional mean wind parameter
that must be known at each altitude. As shown in Section 4.2.1.1.2, a variation of wind
heading with altitude (heading shear) has an effect on the shear that the airplane sees that is
added to the mean wind speed shear effect.
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Analytic descriptions for the variation of wind heading with altitude are provided in
Sections 2.3.1 and 2.3.5.1, but these descriptions lick empirical support. A small amount of
heading shear probability distribution data was found in the literature and is reported in
Section 3.2.3.1. The data indicate a majority of heading shears are within £3%100 feet and a
greater iendency to rotate counterclockwise while approaching the surface. The tower data
used to determine the atmospheric stabijlity distsibution were also evalusted for heading
shear information in Section 3.3.4. Distributions tended to be larger near the surface but
constant above about 150 feet. No consistent trend of the profile shapes could be found.
Heading shear was found to be uncorrelated with both wind speed and atmospheric stability
(Sec. 3.3.6). In order for the heading shear to be significant, the wind speed must also be
large (body axis shear components involve the combination Vw dwwldh only). The
probability of having a large heading sheur and wind speed shear is sufficiently remote and
the information for specifying the variation of wind heading with altitude is suificiently
poor so that a representation of wind heading dependence upon altitude is not attempted;
the wind heading is assumed to remain constant and equal to that at the surfuce. The
distribution of wind heading at the surface was developed from wind roses for the same 24

sites used to determine the wind speed distribution (Sec. 3.2.1.3) and is presented in
Figure 1-19,
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3 A major factor to which longitudinal touchdown dispersions are attribu* @ is the
1 longitudinal wind shear component. Considerabie literature has been written on . .¢ subject,
but conflicting conclusions are provided, Some predict a headwind shear will cause an
overshioot, while others predict an undershoot. The subject is evaluated in Section 4.2.2.
Some of the differences of opinion can be attributed to different trim and operation
procedures. However, it is concluded that one of two airplanes can overshoot while the
other undershoots due to o wind shear, even if both are operated in the same manner.

The effect of a steady wind is to alter the pitch attitude (8) at which to trim to hold a given
glideslope (7):

= é

Ve COS - :

+ W eos (¥ WW’]7+a !
Va ]

where @'w = 0 is . tailwind, For a headwind and a negative glideslope, the pitch attitude
must be increased by (Vy/V )Y trom that for still air and the thrust increused by
A(thrust) = WA, or the airplane will touch down short.

33




R R R lhi e

TR

B80ODY AXIS MEAN WIND COMPONENTS

R

Ty (cos(w - JJW) cos /i W

G TN TR AT

-

Vw | = [cos (¥ - Pyl sin D sing
¢ §-sin(y - Jy) cose > Vw

Wy cos(y - Py sind cos¢
[ sinty - Pyl sing

.

BQODY AXIS MEAN WIND SHEAR COMPONENTS

’aaw’ _oos(w - le) cos ) sin (Y - Yyy) cos ]
ah -
cos (Y - Yyl sinOsing  sin (¥ - Yy sin 6 sin ¢ v
oV . - w
wis..|- - - —
< P > =-| -sin (Y - Yy) cos ¢ +cos (¥ - Yyl cos ¢ ah
2y cos (¢ - Ew) sir cos sin (¥ - Yyl sinfl cos ¢
\W/ _+sin(w-—\'/w)sin¢ -cos (U - Yyl sing

BODY AXIS TURBULENCE COMPONENTS

UAP =[cosacosBcos{)+sinﬁsinvsin¢+sinacosﬂsinl) cos¢] VACG

YAp =[sinBcos¢-sinacosﬂsin¢ ]VACG

AN S AL L LA bkt R LA MR B R kU Lt L R it I G S

YArg
Ay = -tan"u x-g

Arg
cos Ay cos sin Ay cos ) -sinf 7] u W
up Trg
cos Ay sinf sing sin Ay sind sin ¢ .
vr b= +sin Ay sinf sing  +cos Ay cos ¢ cos 0 sin ¢ VTTG L
Wer cos Ay sinQ cos ¢ sin Ay sinf) cos¢
1 |*sin Ay sing - cos Ay sing cos 0 cos ¢ WTTGJ

FIGURE 1-18.— TRANSFORMATIONS
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- If the airpline is trimmed for a headwind at a high altitude and the headwind decreases with
P altitude, the pitch attitude must be decreased throughout the approach and thrust
1 currespondingly decreased, or else the airplae will touch down long due to the attitude
1 effect.
§
P There is also a second effect of a wind shear. If the approach is to be performed at constant
E airspeed, chunges in the wind speed must be matched with changes in the inertial speed. To
3 provide inertial acceleration, thrust must be changed by
S ' W(V 5 + V) dV 1
A(thrust) = Ag L -ar-}v Y
| |
For a headwind that diminishes during an approach ;
: |
dVyy
—
dh - >0

and thrust must be increased or the touchdown will be short.

L W, o Pl

The combination of the attitude and acceleration effects is

w1V, g dh

DR e Sy o R
1L o N WLt Ll B

So long as the magnitude of the wind increases with altitude and the airplane is trimmed for :
the high attitude wind, the two terms have opposite signs. For airplanes with low airspeeds,
the attitude effect tends to dominate. For a given airplane, the acceleration effect will be
stronger at lower altitudes where th shear is relatively strong comparcd to the total change
of wind speed. This evaluation presumes the airplane is controiled in an open-loop manner.
The ability to attain closed-loop control, either by the pilot or the autoland system, depends
in part upon the open-loop stability of the aircraft-autoland system.
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Airplane stability is affected by the wind shear, as shown in Sections 4.2.1.1. and 4.2.1.2:
aerodynamic forces and moments are dependent on the components of wind speed, motion
is dependent on acrodynamic forces and moments, and the components of wiud speed are
dependent on airplane motion. If the aerodynamic characteristics can be considered to be
concentrated at the center of gravity, only longitudinal stability, principally phugoid or long i
period stability, is affected by wind shears, A headwind shear can either stabilize or ’
destabilize the phugoid, depending on the characteristics of the airplane’s stability k
derivatives. It a headwind shear has stabilizing effects, a tailwind has destabilizing effects,
and vice-versa.

M e AT

% L b

o ikt s s Rl

The effects of a wind shear may not be adequately represented by considering the *
aerodynamic characteristics to be concentrated at the center of gravity. Due to the change
of wind speed with altitude, there is a distribution of wind speed over the vertical tail that
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introduces a rolling moment. When the awrplane is disturbed from zero pitch attitude and
wings level, the different parts of the airplane in the plune of the wings will be at different
altitudes and there will be a distribution of wind speed about the airplune and a
corresponding change in the distribution of lift.

The distribution of wind about the airplane may well be represented as being linear in three
dimensions. Then the components of wind at some point {x,y.z) are¢ represented by

o dilyy Aty diiyy
Uy = uwCG + —5;—)( + —a—y- + -3;1
- _ an Wy vy
Yw < VWCG + '—a-;'x + —5-)’— + '3;7.
L AWy AWy AWy

Wy = WWCG +-—a'x—x +~5)T + ‘52-2

The derivative of body axis wind components are expressible in terms of the mean wind
shear (Sec. 4.2.1.2) and can be interpreted as effective angular components of wind. For
example, the distribution of the lateral component of wind about the vertical dimensions of
the fin appears os a roll rate, which generates a rolling moment proportional to the fin’s
contribution to the roll rate derivative of rolling moment.

Linear analysis predicts that the distributed lift effects of the mean wind shear appear
primarily for lateral-directional motion. These effects are due to the headwind-tailwind
component of the shear. The wind shear alters all of the lateral-directional stability
characteristics, but the sensitivity of the characteristic roots to wind shear are configuration
dependent.

Representation of the distributed lift effects is the only reason for computing the mean
wind shear at each altitude. If the distributed lift effects can be shown to be insignificant,
the computation of the shear can be left out of the simulation.

1.3.2 Turbulence

For unstable atmospheric conditions, amplified displacement of air particles from their
initial positions due to buoyancy forces cannot increase without bound. Turbulence is the
mechanism by which the effects of instability are constrained through the mixing of hot and
cold air particles, which produces equilibrium locally. The appearance and disappearance of
turbulence with changing atmospheric stability involves a hysteresis effect, but it is
predicted to occur at the critical Richardson’s number, related to the log-linear mean wind
profile constant:

R =0.222 fora’= 4.5
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The equations of motion for turbulence have been developed from the Navier-Stokes
equations, but the severe nonlincarity of these equations has prevented their solution. Even

;; it they could be solved, it is questionable as to whether they could be practically applied.
1 From observations relating to these equations, some characteristics have been determined:
;’,.

E: o Turbulence transports energy from large eddics, where it is generated mechani-
Ft cally and thermally to smaller eddies until it is finally dissipated viscously.

E,

e Turbulence can only occur nonlinearly in three dimensions.

® Turbulence is diffusive and far more efficient for the transport of mass,
momentum, and heat properties than molecular motion.

e Turbulence is a continuum having a smallest dynamically significant scale much
farger than molecular or intermolecular dimensions.

e Turbulence is approximately an equilibrium phenomenon for homogencous ‘
terrain having very low rates of change of kinetic energy.

ST FONNR AR T T T ST AR $ 3P

3

: e The diffusive, continuous, and equilibrium characteristics tend to produce ‘
' ; homogeneity tor turbulence in a horizontal plane. !
it i . . . o . e - .

g ! Using these properties of turbulence, u statistical description of turbulence is developed

E (Sec. 2.4.1). The basic statistical function is the average product of two turbulence

E‘ components measured at two points of time and space, the correlation function:

%: Rij“l‘tl'a'i:’)=ui(t|’ F;)Uj(tz,?z)

E N

] When ?I = FE (measured at the same point in space) and t) = ty (measured at the same

4 time), the correlation function becomes the covariance. When, in addition, i=j, the

correlation function is the variance,

3 By invoking homogencity (turbulence properties independent of absclute position in space)

and stationarity (turbulence properties independent of absolute time), the parameters

X reduce to just the uisplacements in position and time between the measured components:

3 -

Rij(ty tarpr) = R(TLE)

;. T = ty - t' .
e oA

FL By additionally applying Taylor’s hypothesis (frozen ficld concept), which assumes airplanes

fly at speeds farge compared to turbulent velocities and their rates of change, the time
displacement can be related to a component of the position aisplacrement, leaving statisticas i
turbwdence propertics defined only in terms of space. :

i
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The correlation function can be transformed into the three-dimensional spectrum function
by applying the Fourier integral:
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The parameter 5 is the spacial frequency vector having units of rad/ft and is related to
3 distance as temporal frequency in rad/sec is to time. The transformation can be reversed by
the inversion formula:

00
- . »
—o0

" » . . i
When ¢ = 0, the correlation function becomes the covariance and the spectrum function can
be seen to be the distribution of the covariance with spacial frequency:
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- 00
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Simulation of turbulence can be performed only by a temporal process. but only one
component of spacial frequency (that in the direction of flight) can be related to time or
temporal frequency through Taylor’s hypothesis, w =9' V5. To obtain 4 spectrum function
: in terms of the component associated with the coordinate in the direction of fight (( Q| )
4 integration of the spectrum function over the other two components is performed. Then

00
~00

Important characteristics of the one-dimensional spectrum {unction, .:(£2)), have buen
derived by Batchelor for the special case of isotropic turbulence (Sec. .’.J..'!). for which the
statistical propertics of turbulence are invariant with coordinate system rotation or
translation. Batchelor showed that there were but two one-dimensional spectrum functions:
one for two parallel longitudinal turbulence components (components aligned to the vector
separating them), ®pp(§2y), and one for parallel transverse components (components
normas to the vector separating them), SnN(S2))- All spectra for orthogonal components
are zero. The variances for all components are equal. The two spectra are related by

dPon(S 1) ?
1 pplsy
¢NN(Q|)-—2'[¢PP(QI)'ﬂl——-—dQI ]

e wear

Determination of one of the isoiropic spectrum functions provides the other.
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Corresponding to the two spectrum tunctions are two nondimensional (divided by variance)
scalar correlation functions: one, f(§), for two parallel longitudinal components, and the
other, g(¥), for two paralle] transverse components, which are also interrelated:

AT

2

“(§)
W = g

TRRT RS ST {1, R TR TTREIT AE, E R e

)
uN“(§)
sg) = -uay'
wp = np+39b

The fundamental correlation functions are analogous to serial correlation functions.

TR TS e T

A measure of the average eddy size, the integral scale (Sec. 2.4.2.3) may be determined from
the fundamental correlation functions:

IR, TR TR £ AT LA

Lp = Off(E)dE
3 -
E Ly = . f g(§)d§
£

Y

For a separation distance, §. equal to the integral scale, the area under the corresponding
correlation function is divided into equal parts. Through the relationship between the

7

L fundamental correlation functions, it can be shown
The integral scales provide means for normalizing distance. It is then g astulated that f(§/Lp)
1 N and g(f/LN) are universal functions. The one-dimensional spectrum functions must

i correspondingly have the form

vk

1 -
q’ii(ﬂl )= °ii'(’“‘i' Lial)
That is, spacial frequency appears only in combination with the integral scales.

Theory and empirical investigation have led to additional requirements for the isotropic
one-dimensional spectra (Sec. 2.4.2.4):

Ty

LTI

o The high frequency asymptotes (excluding viscous dissipation) of the spectra are
of the form &;(§2y) ~Q™'~. This leads to a ratio of the transverse-to-
longitudinal spectrum cqual to 4/3 at high frequencies.

NI IO A B 1+ e a® s
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e The low-frequency asymptotes are frequency invariant. This leads to a ratio of the
transverse-to-longitudinal spectrum egual to 1/2.

e Isotropic spectra must be symmetric about §2; = 0.

A number of isotropic spectra forms have been proposed. The best-known forms for

aeronautical applications are the Dryden and Von Karman forms, presented with related
functions in Figure 1-20,

| T TR B R T e PR K

The Dryden form is simpler and is based on an exponential shape of the fundamental
correlation functions. The Dryden functijon fails to meet the high-frequency requirement.

Sl L

The Von Xarman forms result from a curve fitting expression for the energy spectrum and
satisfy all isotropic requirements. In numerous investigations the Von Karman fornns have

been shown to be superior to the Dryden forms. The Von Karman one-dimensional spectra
are those accepted for the model.

AL Es b e b, P

Although high-altitude turbulence is well represented by isotropy, low-altitude turbulence
(Sec. 2.4.3) is clearly nonisotropic. Specifically:

® The statistical functions describing the field of turbulence are not invariant with
coordinate rotation: variances of turbulence components are not equal and the
longitudinal and transverse integral scales vary with coordinate rotations.

® Low-altitude turbulence exhibits a lack of homogeneity with altitude: the
variances and integral scales of turbulence vary with altitude.

.‘
A RS A : IR,

4 s sy T SRR ke S o F L e i AL R G TR TR A S T S B 0 AL ML TN "

«u BRI & WD, T L 7y K ) !

A non-zero correlation between turbulence in the direction of the mean wird and

vertical turbulence has been found. Isotropic turbulence requires zero correlation
between orthogonal components.

2 A

H
3
z
3
S

There are, however, limited conditions of isotropy found to hoid for jow-altitude
turbulence:

® At sufficiently high spacial frequencies (short separation distances), low-altitude
turbulence is isotropic. This is referred to as “local isotropy™ and requires the
high-frequency spectrum asymptotes to be invariant with coordinate rotuations.

® The existence of a single non-zero correlation function between the downwind
and vertical components of turbulence is compatible with horizontal isotropy
(invariance of the horizontal statistical functions with rotations of the axis system
in the horizontal plune). Horizontal isotropy must be viewed as an approximate
characteristic for low-altitude turbulence, for the variance of horizontal turbu-
lence perpendicular to the mean wind is frequently reported s being somewhat
greater than the varjance of the component in the direction of the mesn wind.

o e o ey Wl

™

The spectra that have been developed specifically for low altitude tend to be for small
regions of altitude near the surface and do not tend to full isotropy at higher altitudes. A
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Von Ksrman Dryden

Longitudinal correlation function:
2/3 1/3
= o “E/L
o = o (aL) "1/3( fig) =et

Transverse correlation functions:

alt) = %% (;%)”3["1/3 (1) £t k2 (‘f[)] ol = o bl [' #]

Longitudinal one-dimensional power spectrum:

2 2
¢PP =0 L r——lw =0 L b
7 [+ Pp =5 (e

Transverse one-dimensional powo?r spectrum: . 02L 2
02 (L&Y 1 +3(L821)
o°L 1+8/3 =y (—-5]-!
(bNN 27 l‘ *‘OLQ])! l RIAL ¢~N L 1+ (Lﬂ)

Energy spestrum:

2, (aL)* 8oL eyt

55 0L E(NN) =

E(Q) -2 1+ aLsZ) V776 " head]?
Definitions:

as 1339

Q- I19! -ISZ1,| +Q f+ ﬂ%'kl

L-{;'fmd e-zf:gmdf

K B(i‘l) nd Ky /3(.51).'. modified Bessel functions of the second kind.

FIGURE 1-20.— VON KAFMAN A?%D L YDEN CORRELATION AND SPECTRA FUNCTIONS
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frequently employed technique that is employed in this report is to adopt isotropic spectra
for low altitude by permitting the variances and integral scales to be different for each
component. The Von Karman spectra are used. These low-altitude forms become:

"Ly 1

+0.339 1,9

I |

o,°L, 1+8/3(1.339L,9,)7

QV(Q’) = l‘
2 !I+(l.33‘)Lvﬂ|)3] fo
i
0u-Ly 1 +8/3(1.339L )"
e, = w2 w : w7l

T1/T6
|1+ .33 L7 /

These spectra were all originally written in terms of the longitudinal integral scale, which is
twice the transverse integral scale for isotropy. so L, and L, must be redefined as twice the
area under the corresponding correlation functions,

Although a cross spectrum, @,y has been found to exist and was modeled in Section

2.4.6.5. it has been concluded that the cross spectrum has a significant magnitude only at
frequencies too low to be important.

The spectra in terms of temporal frequency are obtained by substituting ) = w/V A
(Taylor s hypothesis) and by requiring the variance to be the same in either domain:

4 % oo
oi*= [ d>i(w)dw=j¢i(ﬂ‘)dﬂl
-0 -0

Then

! _
P =7 #; (n, = -‘%’;)

When a random variable is modified by a transfer function, the output spectrum is given by

do(w) = MAw)by(w) (Sec. 4.2.1.3.1)

where:

¢0(w) = output spectrum
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M(w)

amplitude frequency response of the transfer function

P \(w) power spectrum of the random function or noise

Turbulence is represented by finding a transfer function such that

. QQ(w)
M(w) (@)

VAT G T TSN NG T AT AT Ty TTRET R TR TR o [y

where the output frequency response is equal to that desired. When white noise is used,
@) = | by definition. Then to match a desired power spectrum, it is only necessary to find
a transter function with a frequency response equal to the square roou of the spectrum.

TR 4

A

It is not possible to exactly reproduce the Von Karman spectra with linear transfer

functions (Hiters) due to exponents of frequency that are noneven integers, so ap
approximation is sought.

NS

27

The significant criteria for evaluating an approximation to a power spectra is to require the
contribution of each incremental frequency range to the variance to be correct for the
frequency range in which the airplane’s response is important. Directly plotting $(w) versus
w lacks resolution over the entire frequency range. Plots of w®(w) versus log (w) provide

the necessary resolution and the area under such a curve is also equal to the contributior. to
the variance:

TP RTTT I AT TR
bk

Log W)

W)
Ag- = f Plaw =f wP(wid(log w)
w; Log w)

Rt TR LN

The validity of transfer functions representing spectra may be assessed by comparing plots
of this type for the transfer function frequency response squared and the power spectrum.

TR T T TR g R

Filters exactly duplicating the Dryden spectra are often assumed to match the Von Karman
spectra well for rigid airplane responses even though it is conceded the Dryden spectra are
not substuntiated by theory and empirical evidence, This is seen not to be true in Figure
1-21, for the Dryden spectra provide greater contributions to the variance than the Von
Karmun spectra by as much as 25% at frequencies where contributions to the variance are
greatest. Approximate filters that do a much better job of matching the Von Karman
spectra are presented in Section 4.5.3.3 and in Figure 1-22 (where the corresponding

mechanization is also shown). Comparisons of the filters in Figure 1-22 with the Von
Karman spectra are shown in Figures 1-23 and 1-24,

i

bk sl Ui

g i o B

The white noise may be generated by either hardware or software (digitally). There are
several methods available, as discussed in Section 4.4.2, each with different shortcomings.
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When the noise is generated digitally, it is only approximately random and the noise

spectrum is only approximately flat and equal to one, The digital generation of white noise
consists of three main steps:

1) Random numbers having a uniform distribution between 0 and 1 are generated.

2) From the uniform distribution, the distribution assumed to hold for turbulence is
generated,

3) The noise thus far produced will have a unit variance and a spectrum amplitude of
At/2x (At = frame time or sampling interval) no matter what distribution is used
in 2). To provide white noise for which the spectrum amplitude is one, the output
from 2) is multiplied by J2#/At.

Turbulence velocities within a single patch of turbulence are assumed to form a Gaussian
distribution (Sec. 1.4.1.2). Although the distribution of turbulence velocities for the sum of
all turbulence patches huve been shown to be non-Gaussian, this is not inconsistent with a
Gaussian distribution for a single patch of turbulence,

The simulator model for turbulence in Figure 1-22 jJacks definition of the variances and

integral scales. The measurements and theory for these statistical parameters of turbulence,

measured in an axis system aligned to the mean wind, are presented in Sections 2.4.4
and 2.4.5.

Dimensional analysis leads to a description of the vertical turbulence standard deviation for
unstable condition given in Section 2.4.4.2.1:

v 1/3
ow_ [t ¥w Dy /

Us [u: oh \C/ ¥
D and C are constants

For neutral conditions where the nondimensional shear at the surface (kh/u.)lavw/ah) is},

is well accepted. For extremely unstable conditions, the nondimensional shear is negligible
and the equation reduces to

UW_D( h)'/3
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The constant D is well represented by 1.7, hence

s -]

The nondimensional shear has been described as a function of h/2' only, »0 o,,/ux is also
completely described by h/®'. For near neutral conditions and slightly stable conditions, the
shape of oy, /us+ versus h/2' has been made to match that of measured data, The standard
deviation of vertical turbulence is reduced abruptly beginning at h/2' = 1, above which the
nondimensional shear is constant, to ¢ wlux =0 at h/Q' = 1.22, which corresponds to the
critical Richardson’s number (Rjcpyy = 0.222). The combined description for ¢ w/us is
presented in Figure 1-25. The procedure for computing the rms level of turbulence vcrtu.al
to the carth is:

Q

£

H]

| ==

*
ooy
=} Q
* |
—
aol-__,-
~—
[Pt

ux /k
= 04V (0} (¥ Y|owh
= 0-4v20( V70 ) (u*o) [u*(gl)]

where:

Uy /k
= determined for the mean wind model
V"()
Ux* h

el 1- T as determined from the mean wind model
*

d =

2000 ux 0 as determined for the mean wind model

The standard deviation tor vertical turbulence is describea as being proportional to the mean
wind speed at 20 feet, as decreasing und finally disuppearing with increasing atmospheric
stability, and as tending oward zero as altitude approaches the boundary layer. The
variation of 0., with altitude for diffe: ent surfuce wind and atmospheric stability conditions
is shown in Figure 1-26.

Dimensional analysis relationships for the variances of horizonrtal components of turbulence
have not had good empirical support. At the surface, the magnitudes of the horizontal
components are significantly greater than magnitude of the vertical component with the
component in the direction of the mean wind trequently reported as greater than the
horizontal component normal to the mean wind, The data in Section 2.4.4.2.5 do not
indicat: any clear relationship between the variances for the horizontal turbulence
components but do show them to be approximately equal, so horizontal isotropy (0, = 0y,
L, = L) is assumed. This enables describing turbulence characteristics according to whether
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FIGURFE 1-25.— o,/u, VARIATION WITH STABILITY

turbulence components are vertical or horizontal. A corresponding change of nomenclature
is adopted: oy, replaces o, Ly replaces L, oy replaces 6, and 0., and Ly replaces L, and
L, (subscripts H and V refer to horizontal and vertical compeaents).

The change i nomenclature aids in differentiating between turbulence components aligned
to the mean wind and turbulence components aligned to other axis sysiems.
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‘

It is assumed that the horizontal components of turbulence have variances that change
identically with stability. Qualitatively, this is not correct, but any other quantitative
descriptions bascd on the information in hand would be just as arbitrary but more complex.
As a result, the standard deviation for horizontal turbulence may be described by

o4
Oy ={——}o
H ( ) \'
ov
At the surface op/oy = 2 is a good compromise of the data. Above a sufficiently high

altitude where complete isotropy begins, hl‘ °H/°V = 1, There is little information to

describe the variation of "H/"V with altitude, sc in Secticns 2.4.6.3 and 2.4.6.4 an
interpolation equation,
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-,

L

[/
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FIGURE 1-27.— SELECTED DESCRIPTION FOR VARIANCES OF
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was developed that is qualitatively similar to other variations proposed.

Implied estimates for the altitude above which isotropy exists (hy) range from 300 to 2500
feet. The latter number is an extreme. A value of hy = 1000 feet is chosen, is adequately
supportable, and provides integral scales comparable with other models.

The integral scale for vertical turbulence is predicted by dimensional analysis to have
the form

Ly=[B(R)] h (Sec. 2.4.5)

That is, the vertical turbulence integral scale is linearly related to altitude with the
proportionality constant dcpendent upon stability.

The atmospheric stability dependence of the proportionaliiy constant is apparently weak, at
least for a wide range of stability conditions, and is assumed to be constant. Estimates for B
range from 0.125 to greater than 4, with most estimates centered about 0.5 and 1. Unit
proportionality is assumed. The estimates about 0.5 may be for the literal definition of
integral sczle equal to the integral of the correlation function rather than the redefinition of
twice that area. Hence, the estimates of 0.5 may be consistent with the unit proportionality
assumed for the redefinition. In keeping with isotropy about 1000 feet, Ly = 1000 feet for
h > 1000 feet.

T AT VRN YIRS A 0 TP~ VAT TP SR Tl o IR, AT TR W ST ST T W A u~mwﬁmﬂmwwp‘ﬁ7mmmmm

The integral scale for horizontal turbulence is the paramcter for which knowledge is poorest.
It may be derived from the condition of local isotropy ! low altitudes, which can be shown
io require (Sec, 2.4.3.1):

L by vt R

L =(H), (Fig. 1-28)
H™ Uv vV *

] This description pruvides a horizontal turbulence integral scale greater or equal to that
4 vertical turbulence. At the surface, Ly= 8 Ly. Above 1000 feet, where isotropy is assumed
:z to exist, the intcgral scales are equal. These characteristics are in agreement with
: observations (Sec. 2.4.5.3).

> There iz an inconsistency in the turbulence model developed: the power spectra are for
turbulence components aligned to the airplane’s velocity with respect to the air mass and
= the standard deviations and integral scales are for turbulence components aligned with
respect to the plane of the earth and the mean wind heading. Both sets of components can,
in general, coincide only for an observer whose position with respect to the earth is fixed.
This inconsistency of axis systems is examined in Section 4.3,

b L

One exact approach for resolving the differenc:s in axis systems consists of transforming the
variances and integral scales from the mean vind axis system to the axis system attached to
the relative wind where the spectra shapes are known. Turbulence components would then
be generated in 'l relative wind axis and transformed to the body axis. Transformations for
the integral scales and variances have been developed, but are quite complex. Complete
tensor transformations have been developed and reveal that when the airplane’s relative
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velocity is not aligned to the mean wind and when wings are nonlevel, nonnegligible
cospectra exist in the body axis (components of body axis turbulence are correlated). Since
the power spectra shapes are in general not known in the mean wind axis system and the
cospectra forms are not known for a body axis system, the exact method cannot be
performed.

Errors from approximate methods were examined. It was revealed that for low-altitude
turbulence, it is much more important to have the correct alignment for the variances and
integral scales than for the spectra shapes, The greatest error in the spectra magnitude at any
frequency for tusbulence normal to the airplane that can occur due to misalignment of the
spectra shape is a factor of 2, while the greatest error possible due to misalignment of the
statistical parameters is a factor of 64. The best compromise found was to gencrate
turbulence in an axis system that is in the plane of the earth but aligned to the heading of
the airplane’s relative velocity vector with the filters in Figure 1-22 and the specified rms
levels and integral scales. The components of turbulence are then transformed to the body
axis system. The transfurmation required is presented in Figure 1-18.

When the aircraft can be adeguately represented as though the aerodynamic forces and
moments were concentrated at the center of gravity, turbulence atfects forces and moments
through the computation of body axis velocities relative to the air mass:

up = u- Uy Uy =Sty tup

va = Vevw Y SV T

wa =w-ww.ww=Ww+wT

Va = uptrvpTewy’

u, v, w = inertial velocity components along the x, y, and 2 body axis
coordinates

Up VA WA = components of airplane velocity relative to the air mass

uy Vw Wy = components of wind relative to the carth

Uw. Vyy Wy = components of mean wind relative to the earth

U VT W = components of turbulence velocities relative to the earth

The relative velocity components are used to determine the parameters, which in turn
determine the acrodynamics forces and moments:

i YA
o = tan™' — = angle of attack
UA
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£ 8= sin”} -\7'1 = sideslip angle
3 A s
3 R
3 q = %V A2 = dynamic pressure k|
. UaW-wyull
&= AP
up~ + wy
g 2. . . . 2
é-— (Up~= +wy )v-vA(uAu+wAw) 2
2/ 2w 2 A
\ISVATSRA T -
Note that for the point representation, Gy = vy = Wy = 0. 3
The attenuation of the high-trequency response of forces and moments due to the fact that '
lift cannot respond instantaneously to changes in angle of attack (unsteady aerodynamics)
can be handled approximately through use of the Kussner and Wagner lift growth functions :
in the manner described in Section 4.2.1.3.4.
B In general, it is not adequate to assume the aerodynamics may be represented by a point for *
E the purpose of simulating the effects of turbulence; there is a distribution of turbulence
3 about the airplane that causes a change in the distribution of lift. The point representation “
E has heen estimated in Section 4.2.1.3.3 to be accurate only up to:
3 A > 1208y 4
; w < 60¢ for tailless aircraft or for the wing only
or < 0l VA/QT
Va , 3
< 0.05 — for tailless aircraf't or for the wing only :
¢ E:
Ay > xb ks
. &= where: 5
! 7\| Ay = wavelensths in the longitudinal and lateral directions, respectively E
er = tail length
% b = wing span “
4 g;f’ T = mean chord 3
z‘ g{ Py
] & Only one method of representing all the distributed lif't effects suituble for simulation has

been found. This method represents the distribution of turbulence lincarly, just as was done
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for the distributed lift effects of the mean wind. The derivatives of turbulence with respect
to the coordinates are related to effective angular components of turbulence:

b
:
%
£
5

Effective Turbulence Angular Velocities

E Wing Tail

ow v
TSy AT
: ow ow
g _ T _ T
? 9T 7 Tax U T B
EJ _ Ouy _ vy
3 T T %y T = "x

P 4T I = etfective body axis roll, pitch,
and yaw rates due to turbulence
with respect to the carth

H
ra

The effective angular velocities are generated through matching the spectra for the
turbulence derivatives and their cospectra with the linear velocitics ot turbulence ina manner
similar to that used for generating linear components of turbulence.
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i

raiiey

The effective angular velocities affect body axis forces and moments in the same way as did
the lir.ar components of turbulence. For example, the yaw rates of the airplane with
respect to the air mass are computed by

rA = - Iy rw='r'w+r»r

Separate yaw rates tfor wing and tail are computed as the effective yaw rates of the wind are
different. A total force or moment due to yaw rate is the sum of the contribution of the
wing force or mrment derivative with respect to yaw rate times the wing yaw rate with
respect to the ain mass and the contribution of the tail to the force or moment derivative
with respect to yaw rate times the tail yaw rate with respect to the air mass,

RTIPTTF PAART IRGI T ey TOT T

Y

Ll e

A At tower and lower turbulence frequencies, the lincar representation of the distribution
1 becomes exact. The lincar distribution becomes poor at high frequencies: relating effective
angular velocities to turbulence derivatives  roduces infinite variances of angular velocities
due to the error of the representation at lugh frequencies. The spectra for the angular
velocities must be attenuated at high frequencies or truncated.

T

Ll o i

T

A comparison of representing the distribution of turbulence in this manner with the point
representation is made in Section 4.2.1,3.3. It is concluded that a factor of 10 improvement
in the maximum frequency to which the representation is valid occurs for representing the
longitudinal distributions. However, no improvement over the point representation occurs
for representing the laveral and vertical distributions. This does not mean that the lateral and
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3
; vertical distributions of turbulence are insignificant just that they can’t be accurately
; modeled. However, from a simple analysis in Section 4.2.1.3.3, it is concluded that the
rolling moment due to turbulence roll rate will generally be insignificant compared to the
roll rate caused by the lateral component of turbulence.

The power spectra and cross spectra for turbulence pitch and yaw rates that provide
longitudinal distributions of turbulence are represented by simply filtering the vertical and
lateral components ol turbulence by

o TR TR SRR N e TR

T

: S T

: aT Va 40 1

3 | +=—=5 ‘
E TI'VA .
E rT = ——‘—- _____S VT

: Va3 s
3 VR :
: VA ;
: Z
R

.k

The terms l/VA s wopand I/VA S Vo represent the derivatives of turbulence with respect to
the tongitudinal coordinate:

B 224 1 :
1 ax odtdx Vi, |
3 !
¢ s = Laplace trunsform operator .
|4 ¥
: The additional filter !
;
3 1
5 | |
{ —_— :
: 40y f
) I+ $ i

7TVA

PRV,

attenuates the effective angular velocity at the maximum  frequency to which the
representation is valid assuming cight straight line segments are the minimum number that
can adequately represent a sine wave, That is, the effective angular velocities are attenuated
at a tfrequency corresponding to a wavelength that is cight times the distance over which the
distribution of turbulence is provided. The power spectra that result are shown in Figure
1-29, There are also body axis accelerations due to distributed lift:
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To accommodate the linear accelerations due to turbulence, the equations for & and g are
revised to

UpWa - Walig

& =
7 " [ ] [ ] .
. (uA'-+vA“)vA-vA(uAuA+wAwA)
ﬁ = v 2 / a-_’. -
AVUA TV
where
l.lA = fl‘(ﬁw"'l?l-r)
\.lA = \.’-('\‘/-w'f'{"r)
WA = We(Wy W)

For the representation of the longitudinal distribution of turbulence only (gust penetra-
tion), there is an alternate technique based on the frozen field hypothesis. The turbualence
velocities may be considered to be frozen with respect to the air mass as rates of change of
turbulence velocities are small compared to the speed and dimensions of an aircraft. The
turbulence velocities that strike the airplane at its center of gravity will occur at the tail a
time At =2/V, later. The turbulence at the tail may be represented on a digital sunulator
by storing turbulence velocities occurring at the cg for the appropriate time lag, then using
them for turbulence velocities at the tail. It digital noise generation is used, two identical
random number sequences displaced in time by At= RT,/VA may be used. Additionally,
linear filter representations for a transport lag are provided in Section 4.2.1.3.3. Separate
buildups of angle of attack, sideslip angle, and dynamic pressure are provided for the tail,
and the forces and moments due to the tail are built up separately from those due to the
wing-body. This method is described in more detail in Sections 4.2.1.3 3 and 4.5.5.
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i The highest frequency to which gust penetratica is accurate using the transport lag
4 method is
W< o -:A-
i ¢
E which may not be as good as the restriction for the hnear distribution method of
3
£ w<gs Y;A_.
: T
“ The two methods mzy be combined by separate wing and tal representations using the
3 transport lag plus a linear distribution representation for the wing. The maximum frequency
then increases to
- v

w < A

T

The need to provide more and more accurate representations, or rather the sufficiency of
any approximation, depends on whether the variance of airplane motion parameters are
significantly altered. Some considerations involved for determining the sufficiency of an

P s S T e g AL B
&

approximation are provided in Sections 4.2.1.3.1 and 4.2.1.3.2. Approximations that can be
shown to be conservative may be acceptable for certification but provide economic penalties
3 due to overdesign. Care must be taken to demonstrate the suitability of assumptions. As the
E airplane descends, the frequency at which the greatest turbulent energy occurs changes by a

factor of 50. drastically altering the response of the airplane (Sec. 4.2.1.3.5). Generally, the
lower the speed of an airplane, the more accurate the representation required and the
3 greater the coupling between forces and moments along one coordinate with wind and
: turbulence components along another coordinate (Sec. 4.2.1.3.5).

Finally, care must be taken with the way data are analyzed. Far fewer simulations than
conventionally performed may provide a more precise statement of results with fewer
assumptions (Sec. 4.6).
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1.4 WIND MODEL FOR AUTOMATIC LANDING SYSTEM CERTIFICATION

The applicant should account for the acrodynamics of the airplane being evaluated including '
aeroclasticity, plus the distributed lift effects of steady winds and the longitudinal :
distribution of lift due to turbulence, unless it can be shown that these effects are X
insignificant, !

The surface mean wind is defined as that at 20 feet above the ground. The automatic
landing system nced not be certified for surface wind speeds exceeding 25 knots nor for
tailwind_components exceeding 10 knots. The probability distribution of surface wind
speeds (Vag) is presented in Figure 1-9. The probability distribution for the direction to
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which the wind is belowing, (Ew), is presented in Figure 1-19 and is uncorrelated with the
surface wind speed. The probability distribution of atmospheric stability as defined in terms
of Richardson’s number, (Rioq), is correlated with wind speed and is presented in Figures
1-15 and 1-16. The stochastic combinations of surface wind speed and heading and
atmospheric stability may be generated by the modei in Figure 1-30,
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FIGURE 1-30.— PROBABILITY MODEL SCHEMATIC

The mean wind at any altitude is computed from the equation:

o o (v h h
Vy(h) = vm(-v-go— In(5r5) + b/ - e(h/R")

where

u: Ik
Vi

is given on Figure 1-7 as a function of Rjyq
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h €d no matter what the actual altitude
1/2' s given in Figure 1-31 us a function of Rj,q

f(h/2"). g(h/Q') are described in Figures 1-4, or 1-5 and 1-8, respectively.

The mean wind shear at any altitude, needed only to define the distributed lift effects of the

mean wind, is given by
v k
o) 40
ah Va0 df -\’

where ¢(h/®’) is described in Figures 1-2 and 1-3, and where, once again h <d no matter
what the actual altitude.

The power spectra for uncorrelated components of turbulence in an axis system parallel to
the earth but aligned to the direction of the airplane’s airspeed vector are given by

oL ey
by = LI | -~ s
A T assoLgepv 03T
~ 1
_ OH"‘LH ] +8/3(l.339L“w/VA)- “'t/scc)z
Pylw) = eV A 11/6 “radfsec
[l +(l.330L”w/VA)-]
2 < 2 * ferne Yo
_ oy Ly 1 +8/3(|.33)va/VA) - ({t/sec)
b (w) =

IV 11/6 l'il(”SCC
TUA 13013391y w/V )7 fe

where the spectra are defined such that

o0 oo
°H2 = fq:u(w)dw=f¢v(w)dw
- 00 -0

= variance of a horizontal component of turbulence

o0
2 . . . .
oW =f¢u(w)dw = variance of the verticul component of turbulence and where
-00

[
. e, ik =,
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Oy
o detined on Figure 1-25 is a function of h/g’

*
H
o= (W)OV

o
h given as function of altitude on Figure 1-27.

oy
h . h <1000 ft

Lv =
10001t , h 1000 ft

- 3
Ly = Lylupyley)

The spectra are well represented by generating turbulence components equal to passing
uncorrclated Gaussian white noise through the filters in Figure 1-22.
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3 Body axis components of mean wind, mean wind shear, and turbulence are found by means
: ot the transformations in Figure 1-18.

The interrelationships between the components of the wind model and the other elements
3 of the simulation are described in Figure 1-32.

: This model is compared with the current British, FAA, and military models in Appendixes
3 I-A. 1-B.and 1-C.

3
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APPENDIX 1A

COMPARISON OF PROPOSED MODEL WITH ARB MODEL

This appendix provides o comparison of the model proposed in Section 1.4 with the Air
Registration Bouard (ARB) model defined in the following refereace: “Air Registration
Requirements,” Paper No. 367, Issue 3, June 1970.

MEAN WIND

The ARB mean wind model provides for a mean wind variation with altitude given by

Vw VREF 0.43 10310( h)+0.35

VREF Vyth = 10 meters)

which can be rewritten as

<)
=
]
|
o
5
|
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N
<
|
o
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G
A

The proposed moded, given by

u h+z i
vV - —:l)- 0 'L _-I.l.y—ll.
Yw * % '"( 70 ) ”(Q') d"(n')]

= 0.15 feet
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hR!‘:F = 20 feet
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3 reduces to approximately the same form when neutrit stability (h/2° = 0) and low altitudes
1 (h/d 2 0) are assumed:

:

E ﬂto (h +2

!;‘ AR & E

Vrer =& M7

3 The only other difference is that the ARB model uses a wind speed measured at 10 meters,
the British standard. while the proposed mode} uses a wind speed measured at 20 feet, the
3 American Standard.

E The explanation for the ARB mouel assuming neutral conditions appears to be contained in
3 the following statement contained in the reference:

£

i “Large wind shears can exist in stable conditions, which usually occur at night
with wind specds less than 20 ft/sec. However, these will be less severe
circumstances overall, since the turbulence will then be less . . .7

3 The qualitative explanation of the effect of stability agrees with the proposed model. The
3 above statement implies that turbulence and wind shears have the same effect, which does
A not agree with the anulysis performed in Section 4.2. Even though the reference is
% concerned with determining the risk of a fatal landing, the above statement implies that this
E risk must be determined with the most severe wind conditions, an attitude that leads to
3 overdesign. The use of atmospheric stability in the proposed model is an attempt to provide
3 wind conditions as they appear; since about 70% of the cases for the proposed model are for
stable conditions, the proposed model will tend to be less severe than the “*RB model if the
1 above statement can be believed.

; The term (h/d) g(h/L") was provided in the proposed model to ensure the shear dirimshed

3 to zere at the edge of the boundury layer. Since no comparable term exists in the ARB
model, the ARB model will provide greater shears and wind speeds at high altitudes. This
difference is unimportant it tiie wind and wind shear above the altitudes where (h/d) gth/2")
is significant has no effect on touchdown perforinance. The parameters most likely to be
influenced by high-altitude wind conditions are the touchdown dispersion parameters.

1 Because the mean wind speed increases with altitude and the probabilistic distribution of
E reference wind speeds ‘VREF’ for the ARB model is presumed to be measured at a higher
3 altitude than is the data for the proposed model. 3t would be expected that for a given
3 exceedance probability the ARB description would provide the higher reference wind
speeds. This relationship has been found to hold, as seen in Figure 1A-1, The ARB model
: provides an average wind speed of 9.1 knots at 10 meters. Using the neutral stability ARB
3 model, the average wind speed at 20 feet is

F

; )

k _ 9.1 In (0-'—-?S

3 Vih=20)= —== === 8.3 kL,
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which is reasonably close to the 8-knot average wind spred at 20 feet provided by the
proposed model. The lack of precise agreement can be atiributed to the following,

1) The average level of atmospheric stability is more stable at fower altitudes. Since
wind speed decreases with increasing stability, the average wind speed at 20 feet
would be less than would be predicted by a constant atmosphere stability model
such as the ARB model.

e kNt Bneme TG o K o1, B B RN i K En Rt SR T M TERSEA AT RRXIE L W,

2) The data employed by the two models are different, measurea at different
locations.

The ARB wind speed exceedance probability data is said to be *. .. based on worldwide
in-service operations of UK. airlines (sample size about 1,000).”

i

TN T RN TR

The technique of taking data corresponding to in-service operations is superior to the
approach taken for the proposed model if the samples were random. tor conditions at a
specific airport would tend to be weighted according to the activity at that airport. Whether
or not the saumples were taken randomly is not known, Although the ARB model presumes
i the wind speeds were taken at 10 meters, anemometer heights vary widely from airport to
airport, Even it the average ancmometer height were 10 meters, deviations of individual
anemometers from 10 meters would influence the tails of the distribution. The main
advantage of the probabilistic description of wind speeds in the proposed model are the
constraints of anemometer heights and the much larger data sample (about 170,000 data
: points), which provides a better description for the more remote exceedance probabilities.
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For six-degree-of-freedom simulations, the distribution of wind heading is needed as well as
the distribution of wind speed in order to provide the combinations of down-runway and
cross-runway  wind components in proportion to their joint probabilities. If separate
dowii-runway and cross-runway wind component distributions are provided, then the
correlation between the components must also be provided. If separate longitudinal and
luteral-direction simulations can be justified, only the distributions for down-runway und
cross-runway wind components are necded.

P
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The heading and wind speed distributions were provided in the proposed model.
Distributions for the components were also developed during e study. The ARB model
provides a strange combination of data: the distributions of the total wind speed and for the
3 cross-runway component are provided. This information is incomplete for either six-degree-
of-freedom or separate longitudinal and lateral-directional simulations.
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The ARB model does not explicitly provide an equation for the wird shear at any altitude
nor does it mention accounting for the distribution of the mean wind over the airplane.
Hence, the ARB model implies the distributed lift effects due to the mean wind are
insignificant. From the analysis in Section 4.2.1.2, it can be concluded that the significance
of the distributed lift effects due to the mcan wind are configuration dependent,
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TURBULENCE
The ARB turbul:nce model employs the same power spectr am form for all three
components:
2
P2y = 20°L ) .

T o1+’

This form corresponds to the one-sided Dryden spectrum for the longitudinal compoenent of
turbulence. By one-sided, it is meant that the spectrum is redefined to provide

o0
5
g-= f d’\'ﬂ‘)dnl
0
rather than the literal definition of the power spectrum, which provides

. o . et taz,
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3 It a turbulence filter operating on white noise is made to match the one-sided spectrum, ‘3
i Gy = 2L |
E : *V, T+LS/V, i
k 4 the resulting variance will be high by a factor of two. Fi
E : The use of a single spectrum for all three turbulence components prevents turbulence from
i B meeting well-established requirements: ¥
2
2 @  Locai isotropy {isotropy at high frequencies) will not result
Eoog e Turbulence will not tend toward isotropy for increasing altitude
: g-' %
9 e . - . :!‘
3 g, Failure to meet these requirements means the relationship between the transverse spectra to 3
z A the longitudinal spectrum is incorrect, %
& . i
;£ The Dryden longitudinal spectrum was found to be inferior to the Von Karman form in -
) . . . . ™
o Section 2.4.2.4 and was found to be a poor approximmaticn to the Von Karman form in
; g Section 4.5.3.3. 3"‘1
B The ARB model detines rms turbulence intensities and integral scales relative to the mean 5
- 5 wind, just as was done in the proposed model. However, the reference does not indicate how -
2 ¥ . . . . . . ¥
o to resolve the problem of spectria defined for components aligned to the relative wind and

3 ;’j turbulence parameters defined relative to the mean wind. ‘
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Vertical rms turbulence in the ARB model is 9% of the mean wind speed at 10 meters and
horizontal rms turbulence is twice the vertical turbulence level. Rms intensities are defined
as invariant with aititude and are said to be representative for neutral stability,

In the proposed model, vertical turbulence decreases slowly with altitude and horizontal
turbulence decreases more rapidly with altitude until it is equal to the level of vertical
turbulence at 1000 feet. All proposed turbulence levels increase with decreasing stability in
the same manner. At the surface, horizontal rms turbulence i twice the level for vertical
turbulence. just as for the ARB model. For neutral conditions, the proposed mode! provides
rms vertical turbulence equal to 10.6% of the mean wind speed at 20 feet. For neutral
conditions, the wind speed at 20 feet is 91.3% of the wind speed at 10 meters. Hence, the
proposed model provides rms vertical turbulence equal to 9.7% of the moan wind speed at
10 meters. which is close o the level specified in the ARB model. Near the surface for
neutral conditions, the two models provide for nearly equal rms intensities.

The faiture of the ARB model to provide for the effects of atmospheric stability on
turbulence, the decrease of turbulence levels with increasing atmospheric stability. and the
evidence indicating the atmosphere is stable for a majority of the time mean the ARB model
is overpredicting ihe average level of turbulence. The invariance of ARB turbulence leveis
with altitude means the ARB model tends to overpredict turbulence levels away from the
surface.

The reference provides for turbulence generated by a Gaussian process, but qualifies the
aceeptability of the Gaussian distribution with the following statement:

“Whilst giving an adequate description of measured wind decreases, the Gaussian
model underestimates the probability of large wind increases. In accepting the
Gaussian  model the assumption has been made that critical touchdown
performance parameters are primarily influenced by wind decreases.”

The qualification is unnecessary. Although evidence shows that for the sum of all patches of
turbulence the distribution of turbulence is non-Gaussian, there is nothing to indicate that
the distribution of turbulence velocities tor a single patch of turbulence (that which is being
simulated) is anything but Gaussian (Sec. 2.4.1.2). N

The ARB model specifies an integral scale for vertical varbnlence equal to the al(itt:k\
except below 30 feet, where it is 15 feet. Why the vertical turbulence integral scale is held ™«

constant near the surface is unknown. Above 30 feet, the ARB vertical turbulence integral \

scale is half that in the proposed model. This causes the turbulence for the ARB model to be
greatest about a frequency that is twice that for the proposed modzl. The use of the
longitudinal turbulence spectra for vertical turbulence reduces this difference.

The ARB model specifies 600 feet invariant with altitude for the horizontal integral scale.
The reference states that this war - termined by approximating a “mean smoothed”
spectrum from six |-hour runs (Fig. 1A-2). The use of t-hour runs implies the mean wind
was the average of a l-hour sample of data, and turbulence is taken as the deviation from
that mean. One hour is a very long period for determining the mean wind (10 minutes is
more common). Within | hour, *mcan™ conditions vary and charges in the mean wind are
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interpreted as turbulence. The effect is to overpredict the spectrum at low frequencies and
to overpredict integral scales, However, the ARB spectrum model underpredicts the “*mean
smoothed” spectrum at low frequencies, as seen in Figure 1A-2, to compensate for this
error. At 100 feet, the proposed model predicts an integral scale of 500 feet, which is not
far different from the ARB specification,

ST, PRSI S METS T T T T Wy S R

Although the reference implies the integral scale for horizontal turbulence changes with
altitude through Figure 1A-3, no provisions for varying the horizontal integral scale with
altitude were made. In contrast, the integral scale for horizontal turbulence increases with
altitude for the proposed model.

The best comparison between the two models is a comparison of the complete spectra,
including the specificd rms levels and integral scales. Comparisons of 2@ are made for the
three components aligned to the 1acan wind in Figures 1A-4, 1A-5, and 1A-6. The ARB
spectrum has been divided by two to provide the two-sided spectrum compatible with the
propused model. The areas under these curves are proportional to the variances of the

components. Hence, the curves define the distribution of turbulence variance with
frequency.

e A

B e T

The proposed turbulence model and the ARB model do not agree well for any of the
components. For the horizontal components (Figs. 1A-4 and 1A-5), the maximum
contribution to the variance at low altitudes is at a lower frequency for the ARB model than
for the proposed model. The vertical turbulence spectra compare much better at low
altitudes (Fig. 1A-6), This is due to a cancellation of differences:
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e The use of the Dryden spectra causes the maximum value of Q& for the ARB

model to be greater, but the use of the horizontal turbulence spectrum for vertical
turbulence causes the maximum of @, to be less.

The use of a smaller integral scoo shifts the ARB specti» to higher frequencies but
the use of the Dryden horizontal turbulence spestium for vertical turbulence
s shifts the ARB spectrum bacl. to lower frequencies.

w
B R e e T ' L R Lt g At

. Even though the rms levels provided by coch model are comparable at low altitudes, the
’ ARB model provides greater maximum values for Q¢ and ¢, thus the ARB model

provides  for a greater conceniration of turbulent energy about the frequency for
maximum $3¢.

S ¢ TR

At higher altitudes, the airplane response to turbulence is clearly greater for the ARB model.
The ARB model will generally have more severe airplane responses at low altitudes, although :
the conclusion as to which model is most severe at low altitudes is heavily dependent upon

airspeed and particular airplane-control system characteristics.
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APPENDIX 1B .

COMPARISON OF PROPOSED MODEL WITH FAA MODEL

This appendix provides a comparison of the model proposed in Section 1.4 with the Feder:l
Aviation Administration model defined in the fuillowing reference: Advisory Circular
20-57A, “Automatic Landing Systems,” Federal Aviation Administration, 12 January 1971.

MEAN WIND

The reference requires demonstrating adequate touchdown periormance for “‘reasonable”

combinations of headwinds up to 25 knots, tailwinds up to 10 knots, crosswinds up to

15:knots, wind shear ol 8 knots per 100 feet from 200 feet to touchdown, and moderate

turbulence. Probability distributions. are specified for mean wind-speeds identical to those

appearing in the ARB model except the *“total wind” speed distribution in the ARB model

‘has been redesignated: “downwind.” Since-the reference is dated later than the reference for

the ARB model, the probability distribution-has likely been taken-from the ARB model.

Using the totul wind distribution for the distribution of the downwind component

significantly overpredicts the downwind component associated with a given exceedance

probability. For example, the average wind speed at 20 feet tor the proposed model- is

8 knots, while the corresponding-average downwind component is only 5 knots. Alternately,
a S-knot downwind component-corresponds to an exceedance probability of 0.5, while an
8-knot downwind component corresponds to an exceedance probability of 0.25, twice as
remote.

The altitude at which the probability distributions. of” wind speeds are to apply are not
specified. Furthermore, it is not- clear how -variable levels of wind speed are to be combined
with a fixed shicar, Several interpretations are possible, as shown below.

1)  The user may arbitrarily select the altitude at which-to apply the wind speeds.
The wind speed varies linearly with altitude about that point at the rate of 8
knots/100 feet. This will result in a finite wind speed at the surface or a wind
speed that decreases to zevo with:decreasing altitude, then reverses direction and
increases with further decreases of altitude. Both of these descriptions of the
mean wind-are unreasonable. \

The user is to evaluate the effects of a steady wind and a shear separately, then
combine results.

A steady wind has little influence o touchdown performance except through-the
decrab maneuver, if one is provided. It is possibie to represent a wind shear
-without representing -the corresponding change in wind speed. through linear
equations. However, as- discussed=-in Section-4.2.2, this-will cause-tite touchdown
dispersions.to be overpredicted.
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3)

To hold constant airspeed along a glideslope in a decreasing headwind requires an
acceleration to increase the groundspeed. If throttles are not advanced, the
airplane will tend to touch short. This is the effect of the shear.

The decrease in headwind requires the pitch attitude to be decreased in order to
hold the glideslope. Less thrust is required to maintain lesser attitudes. Unless
throttles are retarded, the decr¢asing wind=speed will cause the touchdowh to be
long. This is the effect that would be ignored if oniy the wind shear were to be
-represented.,

The user is to represent the meitn wind by

0.08 h
VW ~ knots
h ~ feet

and the probability distribution of wind speeds is to-be used only for determining
turbulence levels. This would make the relationship between the mean wind-and
turbulence arbitrary. In contrast, the proposed model provides a definite
relationship between the level-of wind and the level of turbulence and the shear is
described as varying-inversely with altitude.

The proposed mean wind model cannot be well approximated by a constant
shear. To demonstrate that this is true, consider an-example where atmospheric
stability-is neutral. The wind profile for the proposed model is then

T - by h+0.15
Vw =0.204 V20 ln(_()Tj—)'

If the shear in FAA model is_supposed to-correspond: to the shear computed by
the difference in wind speeds at the surface and 200 -feet, the wind speed-at 200
feet For the proposed-model should also be 16 knots.

Then,

Vog = ;—')](_)%)-—IS = 10.9 knots
"(OJS)

<
£
n

T h+0.15 h+0.15
(0 704)(l09)ln( 015 ) 22241!1( K )

Vy _ 2204
dh " h+0.15




The FAA and proposed wind profiles and shears are compared on Figure 1B-1.

To assess the relative effects of -the two. wind -profiles, an airplane approaching
into the wind at a constant 120-knot airspeed along a 3° glideslope is considered. ,
In Section 4.2.2, an approximate expression for the change of thrust required
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g from that used to -trim the airplane initially was de reloped for such a maneuver: |
E
: = - -
| : (A.T_) i [vw+vA+\/,w V|
P Wiggg. VA~ & db]
g where
P
] — -
% Vi~ < Oand AVyy >0
i for an approach into a headind. IT the airplane -is trimmed for the glideslope at
Er 200 feet
E

{ aVy = Vyy(h)- Vy(h = 200)

A(T/W)

00 -3t = 200).

The change-in thrust-to-weight ratio represents the throttle activity required: to
maintair constant airspeed on a fixed glideclope or, conversely, it represents-fie
airpfanz deceleration if the throttles are not moved,

.

! As seen in-Figure 1B-1, the FAA model requires only a single throttie correction,
E ’ while the-throtties for-the proposed model must be increased at an increasing rate
5 as the ground is approached. If no throttle corrections are made, touchdown will
be far more short of the glidestope -intercept-for the FAA model than for-the
proposed-model. Withnut a throttle adjustment, a high deceleration will occur:for
tiaec FAA model from 200 feet while a high deceleration only occurs near the
ground for the proposed model, too late to cause a significont touchdown
, dispersion.

e o uslibad

The differences between: the two models is even_greater because the shear for the
FAA model is always constant, while -that for the proposed model will change
substantially with changing atmospheric stability and wind levels. Figure 1B-]
makes it cleas that a wind shear -invariant with altitude cannot represent the
effects of the shear in the proposed model.
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TURBULENCE

The turbulence model-in the reference is similar to, and appears to be taken-from, the ARB
model-except for the foillowing significant differences.

1)  The intcgral scaleor vertical turbulence is a constant 30.feet.

B
*

2) The rms level for vertical .turbulence is set at a constant 1.5 knots independen. of
wind speed, atmospheric stability, and altitude.

- -
A
AL ek

3) The s levels of the horizontal turbulence components are linearly related to

3 By .
4 %5 downwind und crosswind components of the mean wind.
od .
4 g . . . .
f;( 4) Components of turbulence are to be generated directly in an axis system attached
b to the orientation-of the airplane (Fig. 1B-2).
= ;‘;
p 2, , . . . o
; ¥ 5) Undefined. concepts of “‘span averaging’ and “arca averaging” are shown to affect
2 . 3 - - a
i g longitudinal and vertical turbulence, respectively (Fig. 1B-2).
K
i
;B

%

The explanation provided-for item 2) in the reference is “The effect of vertical turbulence is
small and a constant level is-satisfuactory.” The reason-vertical tusbulence has-been found to
have small effect is because of item 1): the very small constant integral scale-of 30 feet for

LLas
-

2t vertical turbulence shifts-the power of turbulence to frequencies above those at which the
] ;" aircraft can respond. For the power spectra provided in the reference, which-is-the same as
= H . . . .

9 % for the ARB model, the greatest verticai“turbulence-encergy is about a frequency computed
p ¥ from

)- %‘;

3 '{g Lw _ i

2 Va

i : Hence, for the FAA model and a 120-knot approach-speed, maximum turbulence energy

occurs at

w= L@Z)LO‘:-—-“S) = 6.752 rad/sec.

This (s far beyond the short-period natural frequencies-of most commercial aircraft. For the
proposed model, where the integral scale for vertical turbulence is-equal to-aititude, the
airplane will respond to vertical turbulence until very close to the ground. This is shown in
Figure 1B-3, At higher altitudes, not only will the short period respond io-the vertical
turbulence from the proposed model, but the phugoid-will also respond.

The description of the rms-levels of the turbulence components provided by-items 2}und 3)
-is: horizontal turbulence occurs only in the direction of the mean wind while vertical
turbulence occurs regardless oft the wind level or even if there isn’t any wind. This
description is contrary to the cmpirically substantiated theory -présented in-Section 2.4.4.
Turbulence can only occur in-three dimensions, as can be observed from the equations of
motion governing turbulent motion. Rms turbulence levels are proportional to the mean
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LONGITUDINAL TURBULENCE

Gust
mod~|
T - - i —
:llvoi;:ee 1 ol SpPan | Airspeed
. generator | TiongS* 1 averaging simulation

Tlong is L/V: where-L islongitudinal.scale length ~.600 f1
) V =>2pproach speed (ft/sec)

VERTICAL TURBULENCE
Gust
model
White A L | Area | incigence
noise g Toert: ST averaging | simulation
T vert is L/V: where L is vertical scale_length = 30 ft
’ V = approach speed {ft/sec)
LATERAL TURBULENCE
White | 1 | | sideslip
noise TV Tae. s+1 [ ] simulation

T)at, is L/V: where L is lateral scale length = 600 ft
: V ~ approach speed (ft/sec)

T represents time constant T

S represents the Laplace operator L whure t denotes.a real variable
and S a complex variable:

o0
L] = f e StF (1) dt
0

FIGURE 1B-2—~FAA TURBULENCE MODEL IMPLEMENTATION
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: : wind speed at a given altitude, with the constant of proportionality determined by the state
! of atmospheric stability. It is possible to-have significant levels of.turbulence for low levels
: 21 : of mean wind speed for very unstable conditions, but then turbulence levels would vary
R ;

. strongly .with altitude.

The constant level of vertical turbulence does not even constitute a good average value. Near
the surface and/or during high mean wind conditions, the proposed model defines the rms
i v.rtical turbulence level to be 10.6% of the mean wind speed at a 20-foot altitude. Thus, a
' 1.5-knot rms vertical turbulence level would correspond to a mean wind speed of 14.2

knots. The probability of exceeding a 20-foot mean wind speed of 14,2 knots is net 50%
but 12.5%.

g o T Y

MR ~

The setting of rms levels of horizontal components of turbulence equal to 15% of the
respective components of mean wind corresponds to the 18% of: the total mean wind-speed
; at 10 meters specified- by the ARB model for neutral atmospheric stability. Thus, tiie
reference specifies a reduced percentage of a reduced wind speed.

Specifying turbulence to be generated direcily in an axis system attached to the airplane,
iterr 4), implies the rms levels of turbulence and the integral scales depend upon the
orientation of the aiiplane, The theory and empirical investigation presented in Sections
2.4.4 and 2.4.5 clearly define the statistical properties of turbulence to be aligned -to the
heading of the mean wind. Directly generating turbulence in an airnlane referenced axis
- system was found-in Section 4.3 to be a-poor approximation for vertical turbulence. Near
- the sur.ace, for a 5° pitch attitude generating turbulence directly in the airplane -body
axis will cause the low-frequenicy portion of the vertical turbulence spectrum to be
underestinrated by a factor of two.

P

iy

' “Span averaging” and “‘area averaging” are apparently intended to represent the distributed.
i lift effects of turbulence. Although the reference does not specify -the nature of these
operations, Figure 1B-2 implies that they are linear operations such as filtering. The
representation of the distribution of turbulence about an airplane is discussed in Sccrion
4,2.1.5.3. No suijtable .method corresponding to Figure 1B-2 was discovered. Tie only
suitable method found for simulating the-spanwise distribution-of turbulence was through
generating an effective roll rate due to turbulence by filtering the vertical body axis
component of turbulence. However, -the proponent of this method has found -that

representing an effective turbulence roll-rate does not improve the fidelity of the airplane
response to turbulence,

s s T

Two methods of representing the longitudinal distribution of turbulence (gust pesetration)
were determined and-both may be used-in combinatiun, One method consists of generating

effective pitch and yaw rates due to turbulence by filtering the vertical and lateral body axis
compenents-of turbulence by:

')
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where £ = length from wing aerodynamic center to-tail aerodynamic center.

The turbulence pitch and yaw rates arc subtracted from the inertial-pitch and yaw rates to
formn the airplane pitch and yaw rates with respect to the air mass, respectively, which in
turn are multiplied by the acrodynamtic pitch rate derivatives and-yaw rate derivatives:due to
the longitudinal velocity distribution,

e

SR, SR S

The second method employs the frozen field concept. Turbulence-velocities are assumed to
‘be frozen in space. Turbulence at the tail is-the-same as that at the wing-occutring a time
increment earlier equal to-that required to traverse the distance from the-wing acrodynamic
-center to the tail aerodynamic center. Upon computing turbulence veiocities at the wing,
these velocities are stored for a time At= f/V A ind then are used- as the turbulence
velocifies at the tail. Approximate methods -of representing the transport lag are also
discussed in Section 4.2.1.3.3. The transport lag method of representing -distributed lift
effects requires separate buildups of tail angle of attack and tail acrodynamics but will
: provide a better representation than using just effective turbulence arigular velocities. An
b even better representation.is provided by using eftective turbulence angular velocities with
. the wing contributions to-yaw rate and pitch-rate acrodynamic derivatives in addition to-the
transport lag method.

SRSy e g SR
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L The-representation of the distributed lift due to turbulence is not an unnecessary luxury. 1t

3 . js -generally required for approach speeds to elimipate significant errors caused by using .a-

3 point lift representation of the airplane. As discussed in Section 4.2.1.2-and as provided for

in-the mode) in Section 1.4, it may be necessary to represent the distributed lift effects of
the mean wind also.

”

In-sumnry, the average turbulence condition provided by the FAA model wili generally be
) more serere than that provided by the proposed-model because the FAA model does not
- account for the diminishing or disappearance of turbulence for stable atmospheric
co;-Jitions nor for increasing altitude, which occu: :for a-majority of the time. On the other
hand, the FAA model gererally underpredicts the effects of the more severe turbulence
-conditions for the followi  -easons.

- An unrealistically short integral scale for verticai turbulence causes the aircraft to
o not respond to vertical turbulence.

‘ o Horizontal turbulence rms levels are too Jow of a percentuge -of wind speed-and
- are incorrectly based on components-of-the mean wind speed rather than the total
wind speed.

o The increase of turbulence levels for-increasingly unstable atmospheric conditions
are not accounted:for.

k. e e, e
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The reference incorrectly -implies turbulence components may be attenuated for
distributed lift effects.

The vertical body axis tutbulence tends to- be underpredicted because the
reference incorrectly permits the generation of furbulence directly in the
airplane’s body axis system.
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APPENDIX 1C

COMPARISON OF PROPOSED MODEL WITH MILITARY MODEL

This appendix provides a comparison of the-model proposed in Section 1.4 v,1th the military
model defined in the following reference: Chalk, C.R., Neal; T.P., Harris, F. E., and
Pritchard, F. E., “Background Information and User Guide for MIL-F-8785B(ASG), Military
Specification—Flying Qualities of Piloted Airplanes,” Technical Report AFFDL-TR-69-72,
August, 1967,

MEAN WIND:

The most notable shortcoming of the military model is the absence of a mean wind model
for low altitudes.

TURBULENCE

The refeience recornmends use-of the Von-Karman power spectra-forms, which are-identical
to the spectra approximated by cthe filters in Section 1.4 except-the reference employs the
one-sided: redefinition of the spectra, which have twice the gain of the literal two-sided
spectra. That:is, the reference defines the spectra=such that

2= [ a@dn
0
rather than
OO0
0l= [ @0

The reference also permits use-of the Dryden-spectra . . . when:it is not feusible to-use-the
Von Karman- form, ...” The reference also provides filters which, when modifying white
noise, are to-represent the Rryden spectra, Hewever, in developing the filters, an error.has
occurred. The ‘transformation to the time domain from the frequency domain (Fourier
integral inversion) is:

o0 .
x(= [ @)t

Hence, no niatter if a spectrum is defined as one-sided, the time-simulation will-treat its

filter representation as corresponding to a two-sided spectrum, The effect of the reference’s
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filter representing a one-sided spectrum is to provide turbulence with a variance thiit'is too
high by a factor of two.

The reference describes rms vertical turbulence leve)e ;-obabilistically in terms of ‘the
expected level as a function-of aititude, the probability of encountering turbulence (also a
function of altitude), and the Ray'eigh dlistribution. The reference notes that “..... The
model described-hiere naglects-any effects on the turbulence due to terrain-roughness, mean
wind magnitude, or any other meteorological factor except height (altitude), This means
that the model describes;an average of all conditions for clear air turbulence.” If the mean
wind and mean wind skear are unimportant, the representation for rms vertical turbulence
levels-as-provided by the reference would be satisfactory provided-it could be ensured that
the weighted average conditions yielding the statistical-functions are representative for-the
applications to which the model is intended.

The reference :shows an expected rms vertical turbulence level that is 6.7 ft15002 at the
surface and which declines slowly with altitude, similar to the variation provided by the
proposed model.

R e N

ot

The reference provides-for determining horizontal turbulence levels from the condition of

i local isotropy,
%
o , 5
- é/» qu;z _ "v2 _ Oy

2 1 237,237, 23

oy L, /: L, / Lw'/

S
P and the assumption of horizontal isotropy,
f O, =@
© y

L, =L,

. These same assumptions were used-to-develop the proposed model (Sec. 2.4:6). However,
. rather-than specifying-0,,, L, = L,, and L, then determining-¢;; =0  from the conditions
of local-isotropy as done in the reference, 0, = 0 Ty and L., were -specified and=Lu ='Lv_
¢ were determined from the condition of:local’isotropy in arriving at the-proposed model.
- The variation- of “the vertical turbulence integral scale with altitude is the same -in the
{ reference as in the proposed model (L, =h) except the linear variation with altitude is
: continued to 2500 feet'in the reference-as opposed to 1000 feet in the proposed model. The
3 reference notes that it-chose 2500 feet because that value is currently being used-in other
§' military specifications (for high altitudes). Additionally, the reference notes that 1750 feet,
3 used as the altitude above which the integral scales are invariant with altitude with its
’ Dryden-model, exceeds values commonly used in the-past. The 1000-foot value used-in the
’2 proposed model was found to agree more closely with low-altitude measurements,
b
1
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The reference provides for horizontal integral scales that vary with the cube root of altitude.
This variation is qualified by:

“The variation of L, and L, at low altitudes according to the one-third power of
altitude above ground level is simply a mechanism that forces the scales of the
twe horizontal components to be larger than the vertical scale. Although these
firmula. produce the correct trends, there are little data avaiiable that can be used

to substantiate the h!/3 as used in MIL-F-8785B, It is merely a formula that
produces reasonable results.”

One bad feature of h!/3 variation for L, and L, is that it causes rms horizontal turbulence
levels to go to zero near the ground, although this may be no practical problem as an
airplane’s aerodynamic center is-always substantially above.the ground. In order-for-there to
be a fiuite rms horizontal turbulence level at the surface as indicated by theory and
measurements- (Sec, 2.4.4), the variation of ihe horizontal turbulence integral scale with
altitude must approach linear near the ground. This is a characteristic of the proposed
model.

The observation -in the reference that :these is little good- information concerning the
variation of the ‘horizontal integral scale with altitude is agreed with, and the variation
resulting from the preposed model was also defermined from a somewhat arbitrary
interpolation formula, which provides for hovizoatal integral scales greater than vertical
infegral scales. The objectionable decrease.of the horizontal-rms turbulence level near the
surface-was overcome in- the proposed-model. Additionally, observations providing ratios of
horizontal-to-vertical_turbulence levels and integral scales of about 2 and 8 ncar-the surface,
respectively (Secs..2.4.4 and 2,4.5), were matched.

The reference permits-constant integral scales and variances equal to those-at- 500-feet to be
used for landings. This simplification is-not agreed with (Sec.-4.5.7).

The reference notes that;

“Atmospheric-turbulence should be-described mathematically in an axis (coordi-
nate) system- related explicitly to the turbulence field itself; but instead, for
MIL-F-8785B, the turbulence is -described relative to the zirplane body-axis
system. ... The implication of these assumptions [isotropy in horizontal planes
only] is that flight paths must be-within a degree or so of being horizontal-near
the ground;-otherwise speciai consideration should be given to the non-isotropic
and non-homogenenus nature of turkulence.”

These « .au s are i9 aercemont with the analysis in Section 4.3, which shows that
gerciating tusdwience direcey in e body axis system causes turbulence vertical to the
plane of the airpline to be greatly underestimated at low freguencies due to-using statistical
parameters of turbulence known only in an axis system attached to the mean wind, An
exact method for the generating turbulence for flight simulation could not be found in
Section 4.3, but sather than resigning to the airplane’s body axis systeni as done in the
reference, a better-approximation was found: Generate turbulence in the plance of the earth
but in an axis system aligned to the relative (to the air) velocity of the airplone. then
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transform the turbulence to the body axis system. This method -correctly aligns the

statistical properties of turbulence and.provides only a small error due:to the misalignment
-of the spectra forms,

The reference provides a model to represent-the-disiributed lift effects of turbuience, said to
be based on the work -of Etkin, which is reportegi in Section 4.2.1.3.3. Etkin approximated
the turbulence field about an airplane with the-first two lerms of a Taylor series,.expanded
about the airplane’s cg. For example, the vertical component of turbulence would be
represented in the plane of the airplane by:

ow aw
3 _'& ) (
wg(x,}’) = wgcc; + ( ax)CG X T);E)CG d

The fitst-order derivatives are equivalent to introducing angular velocity components of
turbulence:

e P
Fxicg ® \Blgg E

These expressions become exact as frequency approaches zero, but very seriously
overpradict the turbulent velocities away from the cg at high frequencies.

Etkin recognized this. In an attempt to allevinte the problem, he first formed the
‘three-dimensional spectra-of the derivatives in terms of the three-dimensional spectra for the

cg turbulence velocities:

2

oawg Iw, 82y, 2y, 2,) = -2 ow,,wg (82, 82y, S2,)
ox % )
0 ’(&2.,9 .n-).:ia fo (Q 99 ’Q—).
aawg, W Xr Sy Vo X ww, X0 2y 20
x g

The-three-dimensional spectra are the Fourier integrals of the turbulence-velocities described
in threc-dimensional space. Only one of the spacial frequencies, corresponding to the
coordinate along the airplane’s relative velocity vector, can be used to convert spacial

Trequency into time. To-eliminate the other two coordinates, integrations are performed

with respect to the transverse coordinates to successively obtain: the two- and one-
dimensional spectra;

w(ﬂxy Qy) = / O(QX’ Qy, QL) d-Qz

«00

Q) - d/ V(Qy, 2,) 49,
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Etkin, rather than integrating from -oo to oo, performed the integration over the frequency
region- for which the Taylor series dpproximation was valid. The airplane’s vertical
dimensions are generally small and the distribution of turbulence vertically are relatively

unimportant, so he performed truncated integrations only for the lateral component -of
spacial frequency:

Ymax
B(S,) = Y&y, Q) Ay

-2
Ymax

The integration from -Sly.. 10 Qyqay is analogous to truncating the two-dimeasional
spectra at £Qy .., an arbitrary -but convenient method-of modifying the two-dimensional
spectra; Using the Dryden spectral forms, oniy because of the simpler and more easily
determinable results, Etkin obtained the one-dimensional roll-rate spectra-on Figure 1C-1.
Etkin-reasoned that the truncdtion frequency, Sy ,..., could-be estimated-by assuming that
a sine wave could be adequately represented by no less than eight straight line
segments. Thus,

2r _ 7w

R max = 8(b/2) - 2b

Substituting this expression into the approximate roll-rate spectra from the reference yields

0y2 0:8(ky'/2)13
by =3
v |+(2kl/k2 )-
| ky = L9,
ka = LS
2 W Y max

! Comparing the gain-at zero frequency to those from Etkin’s work on Figure 1C-2 shows that
i the approximate spectra.seriously overestimates-the Etkin low-frequency gain, being about
f 140% higher for large integral scales and/or high-spacial frequencies and orders of magnitude
i too high for small integral scales-and/or low spacial frequencies. Additionally, the shape-of
| the approximate spectrum docs-not compare well with Etkin’s spectra, as seen on
Figure 1C-1.

More significant than the poor -match of the approximate roll-ratz spectrum is the
conclusion from Etkin’s latest book: The Taylor Series method for lateral distributions_is
accurate to no higher lateral spacial frequencies than -is the point -representation.
Representing  turbulence  roll rates provides no  better results than does the point
representation, Etkin reached this conclusion by comparing and examining complex

25
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amplitudes of force and moment components produced on a finite wing flying:-through a
sinusoidal gust field. The Taylor series method was compared to an exact solution and the
maximum frequency was set where the error reached 10%.

The Taylor series method increased the maximum frequency by a factor of 10 for the
longitudinal distribution. That is, representing q, and r, provides an improvement. As a
consequence, the spectra for furbulence pitch and yaw rates in the reference misses the
point. Attenuating these spectra- should not be performed for lateral dimensions, but for
longitudinal dimensions. The one-dimensional spectra should be truncated for wavelengths
less than eight tixies the airplane’s tail arm.

Rather than truncating the spectra, the spectra were filtered at the maximum valid
frequency in Section 4.2.1.3.3. This‘is no less arbitrary and more realistic as wings are
unlikely to-have a response to the effective angular components equal to that at zero
frequency up to a given frequency and no response beyond. The filter forms forturbulence
pitch-and yaw rates become:

1 S .
4 = -v= | —5—1| v (Fig. 1C-3)
1l’"VA )
_ j S \
r, = Vl,i — | (Fig. 1C-3)
l+==— 8§
T VA

where 2y, 2y = horizontal and vertical tail lengths.

An approach that is accurate to higher frequencies i+ to provide separate wing and tail
representations. The turbulence at the tail is that at the wing delayed by a transport lag
equai-to the time required to traverse the distance from the wing-to the tail (¢/V & The
distributions of turbulence over just the wing may- then be represented by the Taylor series
approach,

Although there are-significant differences in application and modeling, the assumptions in
the proposed turbulence model are the same as in the reference and, except for the
dependence of turbulence upon the-mean wing, the proposed turbulence model agrees more
closely with the military specifications than with cither the FAA or ARB models.
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i %;1 2.0 ANALYTIC DESCRIPTION OF LOW ALTITUDE WIND PHENOMENA \
: Tl ; ‘:
z,
. -_ . . . . . . - . e
% This section presents a-review, compariscn, and analysis of the descriptions of low altitude:
! ?ﬁ? i wind phenomena provided by the-literatuce. The emphasis is on an analytic description that 5
i 3 \J - . » » - . .
o provides for continuity with respect to the parameters, as opposed to a qualitative ‘
3 g description. f
AN
¥ The objective of the analytic description is to provide a standard for developing, evaluating,
E oz and comparing flight simulation models. Aithough the resulting composite description.may '
{ :,, be unique, no new scientific work has been done. Rather. engineering judgment was applies? °
' § to provide analytic descriptions leading to a simulation based on information supplied by .
PoE the literature. The resulting description is a composite of work provided by many authors.
. f “ Selection of one of several alternate or conflicting descriptions for a particular subject was ';
E ;‘ based on the weight of evidence, quality of substantiation, appropriateness, and engineering A
L judgment, :
% 1
E-{ Much of the information presented is not-restricted._to any particular application. However,
E ¥ to restrict the magnitude of the task, it has been found necessary to restrict some of the
bE subject matter to the application of interest. Thus, there are specializations to simulator
[y . - . - - . - -
E, 5 usage, application to aircraft, and: the perfornance of their autoland- systems during the
L approach and landing phase, and low altitudes (below 1000 feet).
A
4
E ¥ Additionally, the model is developed for the “average” airport. It is recognized that. such-an .
L] average -probably does not cxist. but-when-the distribution of airport-characteristics and the J
% appropriate weighting of each airport according to its activity are not-available, “average” &
4 characteristics are-seléeted. ‘
- Emphasis is on the more probable-events-(say, with exce :dance probabilities less than 10’3)
) rather than the -extreme cvents (with probabilitics-of exceedance as remote as 10'9). The
- 3’ implication is that the following discussion is not directed at flight-critical control system
<7 design. If an autoland system should fail, the pilot has recourse to manual control. If more
E : remote and more-severe levels of wind should occur, the pilot has recourse to landing at an
P! alternate airport. For [i,oat safety features that must be designed for extremely remote
! occurrences, critical values rather than average values should be selected, or -perhaps a
& . . v - L) .
: description for asingle critical airport should be developed.
[ . Analytic descriptions can be classified as cither deterministic or stochastic. In actuality, all
3 " physical events are likely to be deterministic. However, when the deterministic relationships
- are unknown, are too complex, or when the relevant differential equations have not been
i solved, a stochastic description is--used. A deterministic description: enables parametric
y evaluation and- understanding of the problem but -gencrally has to “be simplified, either
3 merely to avoid complexity or because not ali of the parameters and ‘their effects are
& known. Stochastic descriptions have statistical parameters which, in turn, may be described
3 deterministically or stochastically. Stochastic descriptions suffer from the inability to
§ measure data: for all combinations of events, incompatibility of measurement and
3 i application conditions, measurement inaccuracices, and data misinterpretations,
¥
.' o N 4/
Praceding page blank
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Stochastic descriptions-are often misapplied. For example, if exceedance probability curves
arc given for the steady wind and for turbulence, how are the data to be combined? If the
engineer is given a design probability, he-might choose steady wind and turbulence levels so
that the product of thetr exceedance probabilities is equal to the design probability, or he
might choose levels so-that the.probability of each is ¢qual to the design probability. The
former approach implies-zero correlation between the sieady wind and turbulence while the
latter approach implies perfect correlation, neither of which is likely to be valid. Even if he
wese given the corrélation, he could not-be sure that the correlation given applies for the
coiditions>of interest. Thus,-deterministic descriptions of stochastic processes are-required.

The approach taken is to describe deterministically the eftects of the important parameters
to the greatest extent possible, i.e:, so far as the parameters are measurable. Then, all the
parameters are felated to the smallest number of parameters possible so as to reduce the
amount-of knowledge required by- the user. Ultimately, itis desired to félate all parameters
to a single design probability, but this section will deal only ‘with the description in.terms of

:basic parameters.

It must be appreciated that a:great number of simplifications are required-to arrive at even
the most complex .description permitted by the state of the art. Discontinuities are not
accounted for. To account for such things as iow devel inversion layers, inhomogeneous
terrain, low-level squalls ar.d-the like,.geometrically increases the magnitude of the.task and
is generally-beyond the state of the art,

This section begins with definitions and interrelationships -of different classes of wind

phenomena and then discusses what is known about each class. Although this section is.

intended -to be independent of other sections, the materiai-within thé section is presented:in
building ‘block format whereby the description of a topic is. dependent upon description of
previous topics.

2.1 NOMENCLATURE

A(),.B(2) Scalar functions defining isotropic three-dimensional power spectrumn

Cp < Specific heat at constant pressure

d Atmospheric boundary-layer thickness

e Energy or cxponcntialifunction

E($2) Energy-spectrum function

f Coriolis parameter, f = 2w sin A

f(h/2’) Universal function of h/¥ detining the-incremental change of mean wind-

due to nonadiabatic thermal conditions
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F(§), G(§)

k

kH‘ kM'

K30 Kpy3( )
2,8

Lp, Ly

“w Lv" W

Fundamental longitudinal and transverse correlation functions for -iso-
tropic turbulence, respectively

Scalar function defining isotropic turbulence correlation functions
Acceleration due to gravity

Geostrophic wind speed

Altitude,-reference altitude

Altitude above which turbulence is isotropic

Heat flux, positive upward

Von Karman constant, k = 0.4

Ekman spiral parameter, k = Jm

‘Eddy conductivity and viscosity, respectively

Modified Bessel functions of the second kind of orders i/3 and 2/3,
respectively

‘Monin-Obukov scaling' length and that modified by ratio of eddy
conductivity to eddy viscesity, @' = ky/ky 2, respectively

‘Longitudinal and transverse integral scales for-turbulence components
parallel and normal-to the displacement vector, respectively

Integral-scales corresponding-to the longitudinal,-transverse, and vertical
‘turbulence components, respectively

Pressure
Probability function 3

Position vector

Gas constant

-Gradient Richardson’s number

r=2(4T . 2\ [+ 2
R; = %(Fﬁ *’cb;) /(avw/ah)

Correlation function-for the i-and j tusbulence components
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Normalized correlation function, Rij = Rij/“ij?'
Entropy

Nondimensional mean wind shear,;

§= ﬂl a....__vw
oh
u*O (
Time

Absolute temperature

Friction- velocity and friction velocity at the surfuce, respectively; ux =
Jrlp

Turbulence velocity components parallel and normal to the displacement
vector

Velocity components along the.x, y, and z axis, respectively

Mean wind speed and mean wind speed at a reference altitude,
respectively

Airspeed
Position components
Small-scale roughness length of surface topography

Heading angle between the mean wind and the geostrophic wind and

‘heading angle between the surface wind and the geostrophic wind,

respectively

Log-lincar mean wind profile constant and that constant modified by the
ratio of eddy conductivity to eddy viscosity;

Probability density function

Deacon wind profile exponent

Mean wind profile constant for KEYPS equation and that modified-by
the.ratio of eddy conductivity to eddy viscosity;
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2
Oij

2
Ouw

T

-
T
Tx, Ty, Tz

#(h/2’)

‘bij(al)

Gamma function
Rate of-energy-dissipation

Displacement vector, displacement magnitude and components -of the
displacement vector, respectively

Potential temperature

T
8 = constant X ——=-———
pR/Cp

Three-dimensional spectrvm. function fc  the i and j turbulence
components.
Latitude

Density

Variances (square of standard deviation or root mean square) of

turbulence components parallel and normal to the displacement vector,
respectively

Variances of turbulence components along the x, y and z uxis,
respectively

Covariance between the i and j turbulence-components
Covariance between turbulencé-components along the-x-und=z axis

Time displicement

Shear stress vector, shear stress magnitude, and shear stress components
along.the x, y and z-axis, respectively

Indicator function;zero when << f}. one-when > fy

Universaf function of h/2" defining nondimensional wind shear;

kh

aVy :
s, =n - /)

One-dimensional spectrum  function for the i and j turbulence
components
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<bu(ﬂl), tbv(ﬂl), One-dimensional- spectrum functions for the u, v, and w turbulence
o, (Q)) components, respectively

d)uw(ﬂl) One-dimensional cospectrum function for the u and w turbulence
components

tpij(Ql,SZo) Two-dimensional spectrum function for the i and j turbulence
. components

w Temporalfrequency

WE Anguiar velocity of the earth

5 , 2, Spacial- frequency -vector, spacial frequency :magnitude, and components

Q1,859,023 of the spacial frequency vector, respectively

2.2 CLASSIFICATION!OF WIND PHENOMENA

By convention, wind phenomena are divided into three categories: discrete gusts,
turbulence, and mean winds. However, the distinction between the three is not always clear.

Turbulence and-mean wind are statistical quantities appearing in combination. A sample of
wind fluctuations is divided into.a constant bias about zero plus the deviations about the
bias. The bias-is the mean wind, assumed to-be invariant. Deviations about-the bias represent
turbulence, The-distribution of the {luctuations between mean wind and-turbulence will be
dependent upon the size -of the sample. In a sample of a single data point, all the wind
would be mean-wind. If a laige sample were broken into.smaller »amples, it could reasonably
be expected that the mean value would vary between subsampies. In a sufficiently large
sample, nearly all the fluctuation-may be turbulence. This is/the implication of Figure 2-1,
where the widely quoted- (Refs. 2-1, -2, -3, and 4, .among otaers) Van der-Hoven estimates
of the intensity distribution (multiplied by fréguency) with frequency are shown. The
presumed existence of the distinct peaks leads to the standard distinction between

turbulence and mean wind: turbulence is represented by the peak to the right and the mean

wind-is made up of the distribution at all lower freguencies. Technically, all the intensity of
the mean wind should occur at zero frequency.

The definition of the meun wind is also relaxed to include ('sterministic variations of
horizontal winds with altitude at low altitudes. Thus, to obtain-a mean-from a low-aititude
sample, the sample must be collected at constant altitude.

By definition, the term- “*discrete gust” refers to a discontinuous. individual,.and-distinct
sudden rush of air. In contrast with turbulence, it implies a- deterministic fluctuation of
wind. That is, a discrete gust has a specific physical shape definable in terms of certain
parameters. Local variations of the mean wind may also be classified as discrete gusts. Thus,
in a small sample of winds, there may bé no distinction between a.mean wind and a
discrete gust.
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FIGURE 2-1.—~SCHEMATIC SPECTRUM OF WIND SPEED NEAR THE GROUND
ESTIMATED-FROM A STUDY -QOf VAN DER HOVEN (1957)

The distinction -between deterministic discrcté gusts and randem turbulence may also be
difficult. A wind fluctuation may be deterministic in the extremely small scale but random
on a much larger-scale. In fact, turbulence may be represented by the random-superposition
of a large number of discrete gusts with varying shapes and magnitudes. In a-sufficiently
large sample, the contribution of a single discrete gust to the-statistical-characteristics of
turbulence will. be negligible. In a small sample, the effects will not be—ne_gi;giblwand‘arc
difficult to separate out without prior knowledge of the-existence of the discrete gust.

From the above discussion, it may appear that the difficulty in distinguishing the chiracter
of winds might be alleviated by using only large samples of winds. However, the wind
characteristics must be defined:in terms of analytic descriptions. -In- crder to match tive
assumptions inherent in the- anaiytic descriptions and- to constrain variations in-the large
aumber of parameters, the sample size must be kept relatively small,

In this report; the analytic description-of winds assumes the-distinction between mean wind-
and- turbulence -provided by Figure 2-1. “Discrete-gusts” refers to wind phenomena which
arc generated by local conditions not compatible with the assumptions of the analytic
description of mean wind and statistical characteristics-of turbulence.
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2.3 MEAN WIND

From the definition of nican wind, two additional characteristics are deduced:

e Time variations of -mean wind velocity relative to the earth-are so slow that wind
accelerations may ‘be-considered to be zero,

e Since winds due: to local conditions have been classified as discrete gusts, the

mean wind is considered to be homogeneous in the horizosntal- plane over the
region of interest.

Definition. of the mcan wind, then, consists of defining the variation of the mean wind
vector-with altitude -under various-atmospheric conditions and for different terrain features.
The significant classifications of atmospheric conditions are adiabatic (no vertical heat
transfer) and nonadiabatic conditions. Under adiabatic conditions, the variation of mean
wind with altitude, or the mean wind shear, is generated only mechanically. For the
nonadiabatis conditions there.is 2lso a transfer of>-momentum through heat transfer.

Some general qualitative cha:acteristics-of mee: winds in the atmospheric boundary layer
can be deduced. As mean winds ave-either invariant with time,.or are very slowly changing;
there must-be-an equilibrium-of forces acting on:an :lement of airrmass such that the time
derivative of wind vector with:zrespect to the earth is zere. The principal forces involved-are:

e Coriolis

e Centrifugai

o Gravitational

e .Pressure gradients

e  Viscous

®  Shear stresses
Coriolis and centrifugal forces result from inertial accélerations. If a particie of air is
unaccelerated with respect to the earth, it must be accelerated with respect to-an inertial
reference system due to the angular velocity of the carth. These forces-are actually only-part

of the expression for the acceleration of a particle-in a rotating frame-of reference derived-in
Reference 2-5 by:
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where
- . .
g = acceleration of center of earth with respect to space
-
62, . .
- = mean wind.acceleration =0
5 2
t
= &t
2wx 0 = Coriolis acceleration

€4
”

Tl

>

a2
]

centrifugai acceleration

= angular velocity of earth

1

= radius of earth plus altitude o the point in question
The acceleration of the earth with respect to space-is assumed-to be negligibly small.

Centrifugal acceleration acts perpendicuiar to the axis of the eartirand has a'compunent
normal to the carth that varies-with the cosine of the latitude but-is small at all latituges
compared -with-graviiy. The component at -constant altitude of the centrifugal acceleration
varies withi-the-sine of the latitude and is negligible-near the equator.

Coriolis force is proportional to wind velocity. For constant velocity, it has a component
normal to the earth that varies with the cosine of the latitude but is small at all‘atitudes
compared with gravity for reasonable wind velocities. Its component tangent to the earth
varies with the sine of the latitude.

To maintain homogeneous mean-wind conditions, -the latitude variation- must be restricted
so that changes in horizontal centrifugal and Coriolis force components are small compared
to other forces.

Viscous forces-opposc the motion of the particle and produce one type of shear stress. The
magnitude of -the viscous forces depends on the scale of the problem considered. If the scale
is very small, molecular motion and viscosity is relevant. For mean winds, the scale js large
and the relevant motion is the eddy motion, leading to eddy viscosity, whi: h is on the order
of 107 greater than molecular viscosity (Ref. 2-6). For the study of mean winds, eddy
viscosity is relevant (Ref. 2-7).

Other shear stresses arisc from the interaction- of winds with the earth’s surface, -the
influence of which can be expected to diminish with increased altitude, and temperature
gradients which-provide different levels of energy at-different altitudes.

At the boundary condition at the earth’s surface,-there must be zero wind velocity. Thus,
the wind must increase in some -fashion, at least for small distances from the earth. At-high
altitudes away from the influence.of the surface, the-wind can be expected to tend toward a
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value equal to theproduct of the carth’s angular velocity and the distance from the earth
-due to the tendency of a mass to remain fixed in space in the absence-of forces. Such a-wind
wotld blow from east to west.

The mathematical relationships between the parameters-influencing the horizontal compo-
nents cof the mean wind are provided by the equations of motion derived from the
Navier-Stokes equations and are, as taken from Reference 2-4:

B hiakade R A

T

du —0=f7- l[pa"x]

dat
.
, =0=-fd -__[_P__ .
. .‘r p Loy 2z
3 | where f is the Coriolis parameter describing the variation of the force: = 2wg sinA.

Horizontal components of centrifugal acceleration are neglected. The primary difficulty in ‘
solving for the mean wind components is in describing the variation of the shear stress
components, 7, and Tys with altitude (z).

Three major analytic descriptions of the mean wind in the earth’s boundary layer for
adiabatic conditions will be discussed: the Ekman spiral, the logarithmic profile, and the
X -power law. Additionally, the theory of the logarithmic profile has been expanded to-include
3 nonadiabatic conditions.

o 2.3.1 Ekman Sniral

The Ekman spiral -describes the variation- of the components of mean wind with. altitude
from the top of ‘the boundary layer to -the surface for the following rather restrictive
assumptions:

® Motion is horizontal

e Flow is laminar (zero turbulent stresses) !

e Isobars are straight, parallel, and-constant with altitude ?
@ Above the bounaary layer, the wind (geostrophic wind) is constant with altitude
e Eddy viscosity and density are-constant with altitude
® Temperature conditions are adiabatic
2.3.1.1 Derivation
The assumptions-of coustant winds abo;ri, the boundary layer, the character of the-isobars,

and constent-density leads to constant shear stresses above the boundary layer through the
equations of motion-and defines the components of the geostrophic wind:

|
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where the axis system is aligned with the x axis along the direction of the surface wind and
o is the angle between the geostrophic and surface winds. The equations of motion now
¢ reduce-to
b o . dry
: -(v-Gsmon) v
]
dr
i~ o = A
| f(i~ G cos qo) 7
The assumption of laminar flow permits a simple relationship between shear stress and
vzlocity components:
3 —, ot
: TX - kM Z
i =k Y
where k) is the-coefficient of eddy viscosity, which has:bcen assumed to be constant with
altitude, Substitution into the equations of motion yields the differential equations
L -
3 -t
""'f vV = L Gsinag
F- 9% _ f
u- =~-=—=Gcosa
™ 32 ky 0
Assuming the form-of the solution as
fi=A+BcM
v=C+DeM
wyields a solutjon for=A of
f1\2
A= ( :
) |
§
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! Only the roots which satisfy the condition of a finite wind speed are retained. Applying the 5
[ﬁ ¥ boundary condition of zero velocity at zero height leads to the:solution given in Reference .
{ z 2-6 for an axis system rotated to align the x axis with tne geostrophic wind: :
i ; )
i .
4 5 =G [1-ckK%coskz E
| g 5
k. N «‘;
j v =Ge K sinkz 3
] g
7 where 3
4
wps sin A
f k= /ka | J/ ;
{ =M M
; 4
]
! The resulting profiles of the wind vector magnitude and-heading are shown-on Figure 2-2. i
% ’; The magnitude provides a shear that increases with decreasing altitude. The heading change N
3 : with altitude is near lincar at low altitudes and rotates-counterclockwise with decreasing
] ! altitude in the northern -hemisphere. The -solution -provides a heading that approaches the %
: geostrophic wind heading-asympotically. The total heading change is 45°. “
! : ]
E, , 2.3.1.2 Deseription A
4 } ) ]
3 ’ This phenomenon is described in Reference 2-8 by a tendency of the wind *‘to align itself gﬁ
3 with the pressure gradient (from high to low) ncar the ground, and to align itself with the !
E Coriolis-produced *cyclone swirls” (that are perpendicular to the pressure gradient) at higher H
E altitudes.” This effect is described on Figure 2-3. i
H
- The “cyclone swirls” are-generated in part by the shear at a constant altitude produced by i

the reduction of the -Coriolis effect -toward the equator. The alignment of winds
perpendicular to the pressure gradient is caused by a balance between the pressure gradient .
and the ¢ atrifugal acceleration. As the altitude decreases, the viscous forces increase. i
slowingthe wind down, reducing the centrifugal forces, and-causing the wind- to turn toward
the pressure gradient.
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Wind direction at high altitude

FIGURE 2-3—~IDEALIZATION OF WIND DIRECTIONS NEAR THE GROUND AND AT HIGH
v ALTITUDE (NORTHERN HEMISPHERE)

- The severity of a wind shear component will be dependent upon the magnitude of the
geostrophic wind and the depth of the boundary layer. From the aititude scaling-factor on
Figure 2-2, it can be deduced that the boundary Jlayer -thickness must bé invérsely
-proportional:to the latitude (or Coriolis factor, f). Thus, the thickness-would be infimte at
the equator, invalidating the solution thm. Reference 2-9 provides such an inverse
1 ‘relationship (boundary layer thickness ~fl ). For moderate latitudes, (f= 1.14 x |0'4/sec)
! the thickness-is given at about 3500 feet for adiabatic conditions.

= The conditions required- for the solution of the Ekman spiral are seldom met. Reference 2-9
notes that a 45° turning angle exceeds any chserved, and at moderate latitudes the angle
does not exceed 23% li additionally notes that the solution for the Ekman spiral is
particularly poor for turbulent flow (assumed not to exist). The assumption of constant
eddy viscosity is probably quite poor near the ground as the eddy size, to which eddy
viscosity is -proportional, is constrained by the presence of the ground. Finally, the
] assumption of straight- isobars would resirict the size of the field to which the -solution
would be applicable, depending on the distances-to the high and low pressure centers.

The-idealized-Ekman spiral solui.~n:is valuable, however, for the qualitative description and
understanding of wind profiles in the-boundary layers. It shows the probable existence of
mean wind heading changes and increased change of wind-magnitudes.with Jower:altitudes
that diminish in severity as the equator is approached.

2.3.2 Logarithmic Profile

The logarithmic wind profile is the most widely accepted form describing the altitude
variation of mean wind in the lower part of the boundary layer. It is reported in References
2-1, 4, -6, -7, -9, and -10 through -14, among others. The derivation assumes that near the
ground
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o  Shearing stress and pressure gradient are independent of height

T T TR

e. Coriolis force is negligible compared to other forces

o Preseure force can be neglected with respect-to viscous forces

] e The flow is fully rough; thus, molecular viscosity is not a significant parameter

The assumptions of constant shearing stress and pressure gradient are validated simply by
restricting the maximum  height under consideration until the variations fall within
tolerance. The assumption of .constant stress leads:to the consequence that near the ground
the heading must be constant, and permits the definition of a “friction velocity,” us ,

given by
TO R
u*o = T(meztsurcd;ul'thc surface)

that remains constant with height. The assumption that the flow is fully rougli:is validated

by not applying the law to extremely small heights, which is relative to the scale of the
surface roughness.

o R

2.3.2.1 Development and Description

] The only parameters in the equations of -motion and in the identification of shear stress
remaining are wind shear, altitude, and friction velocity. Panofsky-(Ref. 2-7), who states
that there are many derivations of the law and that the-solution is insensitive to the manner

of its derivation, uscs dimensional analysis (similarity theory) to show that these parameters
must:be related by

s

Caualin®~ i MR

- where k is a constant of proportionality (Von Karman’s constant, equal to 0.4). Intcgration
F .
. yields

The logarithmic profile is thus derived by assuming that the wind- shear magnitude is
inversely proportional to altitude. Although-the profile formally goes-to zero at zero height,
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the equation. is theoretically valid only when height is large compared to: the surface
roughness reflected by zq, the roughness-length or height,

. The logarithm coefficient need not be calculated directly for modeling. Rather, a reférence
; height at which the mean wind is’known is used to extrapoiate for all other altitudes:

A h+z
T In (—--—-Q)
it n "
W "REF ('!REF i),
in -T—-
0

™, <

’

TS T e, ‘—'

taltics)

G

3 Using this form, the mean. wind- profile is plotted on Figures 244 and 2-5 and the
- § corresponding ‘wind shear is plotted on Figure 2-6, all for a reference height selected at
20 feet. An increase in roughness length is seen to cause an increase in wind shear at all
« altitudes. Small roughness lengths-tend to cause a nearly constant mean wind speed down to
3 low altitudes.

g 2:3.2.2 Roughness Length

: Several authors have attempted to dssociate:the roughness length-with types of topography.
g, A summary of the results of their studies is provided on Figure z-7. Reference 2-9 points

out that the roughness length may change with wind speed. For.example, higher wind levels
over water will introduce larger waves, causing an increase of:roughness length.-On the other
3 hand, vegetation will bend more-in high winds, reducing the roughness length, with the
] effect more significant for taller crops.

]

1

4 For “average™ conditions, Refercnce 2-9 provides a rule of thumb-that the roughness length-
is 15% of the crop neight. Reference 2-13 disagrees, however, and reccmmends 3-1/3% of
‘the **average dimension cf the typical roughness particle on the surface,” although ‘“this
ratio of roughness length zg to- the actual roughness may show a rather wide range of
values.” The 3-1/3% relationship-is supported by Reference 2-6, but is only applied to very
small roughness particles.(sand).

The-mean wind profile is influenced not only by the terrain immediately below, but also by )
upwind topography. Thus, for a specific landing field, the effective roughness length will be \
a function of wind heading. Such is the manner that roughness-lengths are presented in
Reference 2-15 for the Kennedy: Space Center. Perhaps it can-be expected that roughness
lgngths will be greater for winds across runways than down runways.

The special case of a sharp transition in surface roughness alonga line perpendicular to the
wind direction his been treated in:References 2-16, -17, and--18. An internal boundary layer
‘height downwind of the transition is defined, below which the .mean wind profile is
influenced by the downwind topography. The internal boundary-layer height increases with
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the downwind-distance from- the transition. The solution, however, is too restrictive for
general application, but future work may lead to significant analytic descriptions.

2.3.2.3 Minimum Valid Aliitude
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The altitude range for which the-logarithmic flow is valid is dependent on the error the user
is willing to tolerate, The literature, however, does provide some guidelines. To maintain the

ol
&

B assumption of fully rough flow, the minimum ualtitude must be much greater than the
?, rovghness-length. Reference 2-9 states that the minimum altitude should be twice the height:
%" of the crops, or using the relationship that the roughness length is 15% of the crop height,
3 about 13 times the roughness length. Reference 2-14 states: “It is generally accepted that in
& neutral conditions, the wind profile between 10 feet and 300 feet may. be given by [the
| logarithmic profile].” The statement is made withcui regard- to any specific roughness
; /‘ lengthi, but a roughness length of 0.15-feet is later recommended. Referenze 2-13 states-that
L the logarithmic profile should be good to two or thiee times-the rcughhess length- (for:a
& ' roughness-length of 3 feet).
.
;‘ The relevant altitude to compare with the minimum altitude for-applyinjg the-logarithmic
*!H; profile is that near the height of the-wing chord plane with-the airplane on the grouiid. For
5 “average” airport conditions with the-roughness length at about-0.15 feet as used in:the Air
P, Registration Board model in Reference 2-14, there will normally be no: problem. If the
?:; roughness-iength is relatively large compared to the wing chord plane, there may still be no
i problem if the time spent below the-minimum-altitude of validity is small, particularly since
i f the trend:-provided (reduced mean-wind speed with reduced altitude) is correct. For-extreme -
Z roughaess, such as that occurring while flying within an area influenced :by buildings, the
3 ! problem becomes that of a discrete gust.
i 2.3.24Maximum Valid Altitude
% .
”‘O As stated -in- Reference 2-9, unambiguous evidence for establishing the upper altitude limit
¥ for application--of the logarithmic profile is not available. Several authors have, however,
estimated -the upper limits by testing the assumptions lcading to the derivation of the
: profile.
:.' It can be recognized that when the altitude is very high with respect-to the roughness length,
. the surface roughness will have only a weak influence and should not be included as a-

o parameter. Thus, perhaps the maximum-aliitude is a multiple of -the roughness length, z.
) Reference 2-13 states that the logarithmic profile is accurate to altitudes of the order of
1000 times z)(150 feet for z = 0.15 as implied in the model of Ref, 2-14).

; More commonly, the upper altitude limit is tied to a-total change-of the shearing stress (the

§ profile assumes constant shear stress). -Reference 2-4 estimates a 100-foot limit at mode-ate

F. latitudes for-a 10% total change of shear stress. Reference 2-7 prevides an upper limit range
of 65 to 650 feet for a 20% change in shear stress.

Reference 2-9 adds the level of turbulence as an additional parameter for dotormining the

upper limit-of validity. It is noted that the logarithmic law holds-for the lower 15% of the

boundary layer for flow over a flat plate but to the center of the pipe for pipe flow,
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analagous to the entire boundary layer. Thus, it is deduced that the upper limit increases
with the level of turbulence (pipe flow is more turbulent). As a consequence, the
logarithmic profile should extend to above 15% of the earth’s boundary iayer or to above
525 fect for the 3500-foot boundary layer at moderate latitudes previously discussed. A
10% shear stress change criterion was applied.

S A S R S B

Reference 2-15 applies the logarithmic profile to the first 100 feet, and Reference 2-14
specifies 300 feet without qualification. Tower data have been evaluated in Reference 2-19,
and the legarithmic profile is found to hold up to 100 feet, the highest level for data
measurement.

The effect of changing shear stress on the mean wind profile is not clear. It may be assumed
that some change of wind lLi~ading may occur. If, for small shear stress changes. the
logarithmic profile is accurate. then because the mean wind and the mean wind shear are
proportional to the square root of the shear stress (through the fiiction velocity), the error
in mean wind and mean wind shear would be approximately hilf the change in shear stress.
Thus, a 10% change in shear stress may be too restrictive, and the npper limit for application
of the logarithmic profile associated with a 10% change may be (0o low.

Application of the logarithmic profile at the extreme upper end of the boundary layer must
certainly be criticized, for these ‘t would generate the geostrophic wind from surface
conditions. The literature (Ru.x. 2-4 and 2-9) has overcome this objection by dimensional
analysis in the “overlap” region, the region that is influenced by toth the surface winds and
the winds near the upper part of the boundary layer. By 2quating dimensionless universal
functions for the mean wind above and below the overlap region, the logarithmic profile is
again found to be valid but, additionally, relationships between the components of the
geostrophic wind and the triction velocity, uxq. are found. The implication is that the
logarithmic profile extends somewhat bevond the region of constant or nearly constant
shear stress, particularly if the constant heading restriction is not maintained.

An additional rationale can be made for extending the logarithmic profile beyond the
constant stress region very near the surface for approach and landing applications. If it can
be accepted that aircraft motion performance parameters are most important when
measured at or near touchdown, then it can be reasoned that the most important wind
characteristics are for altitudes near the surface and that errors in the wind description are
less important as the altitude at which they occur increases. This is particularly true since at
higher altitudes the adiabatic mean wind shear diminishes. Large errors in the description of
a small shear may be insignificant. v

Combining the arguments. it appears reascmable to extend the logarithmic mean wind
protile to 1000 feet altitude for approach and Li wding applications.

2.3.3 The Power Law

An empirical relationship for the wind profile over the entire boundary layer that is widely
used, particularly in meteorology, is the power law. It simply extrapolates the mean wind
measured at one altitude to all other altitudes by altitude raised to some power:




Mw ....Ll..)p
VRiF \PREF

This description is often preferred because of the simplicity of its form.

For adiabatic conditions, the exponent will depend strongly on the surface roughness and,
according to Reference 2-20. slightiy on the magnitude of the mean wind. Surface roughness
may cause the exponent to vary from something greater than zero to unity. The shear
consequently increases less strongly with decreasing altitude than the inverse relationship for
the logarithmic profile.

2.3.3.1 Exponent Value

Average values of the exponent are ofien quoted for three classifications of surface
roughness: smooth, moderate, and rough. “Smooth’ applies to water, open country, prairie
grassland, tundra, and the like. “Moderate™ is used with respect to wooded countryside,
parkland, towns, and the outskirts of large cities. “*Rough” denotes the centers of large
cities. The exponent is increased tor increased surface roughness.

Panofsky, who has contributed greatly to the development of the logarithmic profile, is said
in Reference 2-1 to have recommended exponents of 0.12, 0.25, and 0.38 for the three
classifications. Davenport (Ref. 2-20) summarizes his more complete study (shown in Table
2 1) with exponents s 177, 1/3.5, and 1/2.5. Davenport’s results are often quoted (Refs.
2-3 and 2-9).

The 1/7 exponent is the familiar value used for aircraft approach and landing, perhaps
because it is the aircraft design value specified in Reference 2-21 for civil operations.
Reference 2-22 also affirms that 1/7 is a “typical™ value.

The influence of a magnitude increase of “surface™ winds on the exponents is described in
Reference 2-20 as an increase of 0,02 for ecach 10 miles per hour of wind. Reference 2-14
disagrees and prescribes an inverse relationship between the exponent and wind speed for
the extrapolation of winds with altitude at the Kennedy Space Center from winds at

18 meters:
®

p= ——b—g'/z' (g~ m/sec)
(uls)

(b is normally distributed: b =0.52 £ 0.36)

By comparison, the wind level affects the logarithmic profile only through the roughness
length. For winds over land, it is expected that increased winds reduce roughness (through
the bending of vegetation) and percentage changes of wind with altitude, #nalogous to a
reduced exponent. The difference in the trends of exponents witl wind speed may be
explained by differences in the altitude range for which the winds are being curve fitted.
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2.3.3.2 Relationship with Logarithmic Profile: Conditions for Validity

Skelton has shown (Ref. 2-1) that the power law can be derived from the logo.ithmic
profile. From the equations for the wind at any altitude and at a reference altitude,

- Us h+z
VW ="“an( U)

k Zo

Yo (hRprt2
= _ 0, ("REF*20\
VREF~ % 1"( 7o

A difference equation as a fraction of the wind speed at the reference altitude is formed:

| ( h+ A )

G < n

Yw-VRer__ \'REp* 70
VREF ln(hREF + 20)

29
or
V\V"VKEF [ btz P
exp[ VREF ]-[hREF"’ZO]

The exponential is represented by the first two terms of its power series:

4. PR M
¢ -~—l+d‘f’2+6+

¥l +a for a <l

Thus, if

V- Vepr
e <

LY

vw }:_”' Zp
VREF T [hger + 7




or if, in addition, the roughness !"ngth is always small compared to the reference altitude
and the altitude in question

Vi ho\P
VREF (hREF)

where
p = _——l——— = u*olk
n (hREF + Zo) VREF
YA
0

If the logarithmic profile is accepted as valid for low altitude, then the above derivation
leads to the following conditions for the validity of the power law:

® The Wwind velocity must not differ excessively from that at the reference altitude.
An error of 20% of the wind speed would correspond to a deviation from the
wind speed at the reference altitude of £44.7%, as estimated frem the third term
in the exponential power series. This restriction most severely restricts the
altitude range tor rough terrain.

@ The exponent for the power law varies approximately with the ratio of reference
altitude to roughness length. The reference wind speed must be evaluated at the
sume altitude as the exponent.

o The altitude to which the wind speed is extrapolated and the reference altitude
must both be large with respect to the roughness length.

® All other restrictions applied to the logarthmic profile apply to the power law.

As an example, if the wind speed is known at 20 feet altitude and the roughness length is
0.15 feet, the value used in Reference 2-14, the wind speed error will be less than 20% for
2< h < 180 feet. A 20% error in the shear would cccur above 490 feet or below 20 feet.
Thus. the shear provides a more restrictive lower altitude limit. An accurate altitude range
could be increased by selecting a higher reference altitude, but the penalty would be a
higher minimum altitude.

The derivation provides un analytic relationship between the exponent and the roughness
length. The 1/7 exponent corresponds to a roughness length of 0.046 feet when calculated
from the corresponding reference height of 50 feet specified in Reference 2-21. Spotting
this value in Figure 2-7 indicates that this corresponds to short grass in level lund. Thus,
there is no compromise provided for the influence of the taller growth or greater roughness
often found around airports.
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2.3.4 Influence of Nonadiabatic Thermal Conditions

Up to this point, the meuan wind profiles with altitude considered have been those for
“adiabatic” conditions, or for conditions of no vertical heat flux. Many authors ignore or
dismiss the more general case of nonadiabatic atmospheric conditions, arguing that the
critical design case occurs for high mean winds and, for high mean winds, conditions of near
nesitral sta' ity exist. This argument cannot be readily accepted at this point, because a
tradeoff b..ween turbulence levels and mean wind levels may appear with atmospheric
stability as a parameter. Turbulence and mean wind influence aircraft response in different
ways, and a generalization as to which is more important for all aircraft and aircraft systems
cannot be made, particularly without reference to the exceedance probabilities. the nearness
of “near neutral stability’”, and the associated levels of mean wind and turbulence.
Consequently, the more general case of unconstrained atmosphere stability will be
considered for the mean wind profiie.

The Ekman spiral is strictly an adiabatic profile. However, the literature provides theory and
empirical matching for an extension of the logarithmic profile to nonadiabatic conditions.
The power law, as an empirical law, is provided with empirical measures of its exponent for
nonadiabatic conditions. First, however, it is appropriate to discuss atmospheric stability
and the corresponding atmospheric conditions, its implications, and the methods for its
classification.

2.3.4.1 Atmospheric Stability

Atmospheric stability is measured by the temperature profile with altitude (the temperature
shear). A decrease in temperature with altitude is referred to as a lapse rate or lapse
condition. An increase of temperature with altitude js called an inversion,

During daytime hours, solar radiation heats the earth more than it does the atmosphere.
Vonduction from the earth causes the air near the earth to be warmer than that above, and a
lepse rate results. At night, with clear skies, the earth cools by giving up radiant heat and the
air next to it cools by conduction, thus leading to inversions.

These general associations of temperature gradients with time of day are noted in Reference
2-7, where it is additionally stated that near-adiabatic conditions occur at dawn and dusk on
clear days and on windy and overcast days and nights.

Atmosoheric stability is measured by the tendency of air displaced vertically from its
equilibiium condition to return to its original position. Stability can thus be measured by
the sign and the magnitude of the “spring constant” of air, and is a dynamic concept.
Skelton, in Reference 2-1, has derived the expression for the restoring force, implying the
spring constant:

Fihy +dh)=dh%g.E “%+'€;,I
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The derivatives are evaluated at the equilibrium altitude h; (F (h}) = 0) where

8- 1o

for negligible density and gravitational acceleration gradients.

There will be a restoring force (stable) when the force on the parcel of air is negative. This

A lapse rate of about 0.00536° R/ft is required for dynamic stability. However, when the
equation of state,

p=PRT

i’ leads to stability conditions based on the absolute temperature gradient:
% >é£-, stable (weak lapse or inversion)
P
9%- = Cﬂ’ neutral (adiabatic lapse)
p
%} < é—g‘- unstable (strong lapse)
: P
&

is used in th equation for the pressure gradient at equilibrium, the temperature gradient
required for hydrostatic equilibrium is given as

s

g= (Ref. 2-1)

o g
B D

or a lapse rate of about 0.0188° R/ft In Reference 2-1 it is argued that the air on the
average will be in hydrostatic equilibrium: A greater lapse rate than that tor hydrostatic
equilibrium will causc the air to rise on its own accord and be added to cooler air, raising the
temperature above, reducing the lapse rate, and reducing the forces on the rising parcels of

s Sa

S L S L TR
A

%’;ﬁ air. Similar results are obtained for a lesser lapse rate. {7 indeed hydrostatic equilibrium is
i the average condition, then on the average there will be instability as the lapse rate for
iﬁf hydrostatic equilibrium is greater than that for dynamic stability. Alternately, it could be
%2, . . ee. . x e
1 said that instability is more probable than stubility.
£
- fix“ An alternate parameter, potential temperature, is commonly defined to specify stability.
3 3* Potential temperature, 6, is defined from the equation for a change of entropy:
1
9 C d
& -p dé
= Py = - =sC.—~— Ref. 2-7
fg dS-quTRp(‘po (Ref. 2-7)
] %‘ thus, 8 = constant x (T/pR/Cp).
- B
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Constant entropy (isentropic) coincides with adiabatic conditions. Thus, adiabatic condi-
tions are represented by constant potential temperature with altitude. The restoring force
may be written in terms of potential temperature:

Fihy +dh) = dh & 92 (Ref. 2-1)

The term (g/8) (d8/dz) is a measure of the restoring force, and d8/dz can replace the com-
parison of lapse rates as a measure of stability:

= > 0,stable

T = 0, neutral
T < 0, unstable

The potential temperature derivative by itself is not the final parameter used for measuring
stability. Rather, a nondimensional rativ of the buoyancy force (spring constant) to inertia
force, called the gradient Richardson number, is formed:

do £ dT
Fan Tan'

i g 2 [ av 2
(an/ah) (an/ah)

(@]
-::I""

Alternately, the gradient Richardson number may be thought of as a relationship between
the mechanical shear that tends to displace air and the buoyancy force that may damp (or
amplify) this tendency. Atmospheric instability, as applied to mean winds, is a measure of
the efficiency by which heat and momentum may be transported to different altitudes oy
mechanical means.

2.3.4.2 Log-Linear Profile

The most widely accepted description of the mean wind profile at low altitudes for various
stability conditions is that developed from similarity arguments (dimensional analysis), the
original development of which is attributed to Monin and Obukhov,

First, the conditions leading to the development of the logarithmic profile are applied
except for the requirement of adiabatic lapse rate. Similar to the assumption of constant
shear stress, the heat fiux is assumed to be constant with altitude, and . scaling length
analogous to the friction velocity, uxg, is introduced:

_ 'U*03 CPT
0= —"eh
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(The use of a script *¢” is a change from conventional nomenclature. The upper case *L” is
reserved to represent a turbulence parameter, used later.)

It the changes of absolute temperature are small for the altitude region of application, the
scaling length is essentially constant with altitude. For unstable conditions, the heat flux, H,
is positive and the scaling length, £, is negative.

The introduction of the scaling length provides three parameters that are independent of
height, the other two being friction velocity and surface roughness length. The sucface
roughness length enters only through integration of the velocity profile from the surface
boundary condition, and need not be included for postulating the form of the mean wind
shear. Then, according to References 2-7 and 2-23, a nondimensional shear can be described
as some universal function of only the nondimensional altitude:

kh i_’z_‘!=¢(‘_1)
Tx—*; oh ]

For adiabatic conditions, the universal function must reduce to unity and lead to the
logarithmic profile. Using this knowledge, the universal function is expanded into a Taylor
series about adiabatic thermal conditions. Retaining only the linear term of the series for
small h/€. the nondimensional shear becomes:

_ﬂ‘— ?_Yl-v - ] +al.l.
U*O oh L

or. after integrating,

—_ —i.hxo h+¢0\ h
VW‘ k. [In( ZO ,"'a2

where the origin of the axis system has been shifted to coincide with the surface of the
carth. The characterist:  Hf this equation are the logarithmic portion of the mean wind,
representing the adiabatic contribution, and the nonadinbatic (or diabatic) contribution that
provides an incremental change of the mean wind that inereases lineanly with altitude. These
parts are well described in the name of the profile, the “log-lincar” profile.

This description is provided graphically on Figure 2-8. The nonadiabatic, or diabatic
increment to the wind shear is invariant with altitude. For instability. the scaling length is
negative and reduces or even reverses the shear. Stability provides for an increase of shear
and mean wind. Figure 2-8 provides trends that agree well with those of measured profiles
such as those found in Reference 2-24,

Application of this profile requires knowledge of the scaling length, 2. and the
proportionality constant, a. The scaling length is difficult to measure as it depends on the
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heat flux, Consequently, the literature (Refs. 2-1, -7, -23, and -25) introduces an alternate
scaling length, £, given by

u*oo(avw/ah)
= kg (@6/oh)

The alternate scaling lzngth differs from the fisst one by the ratio of eddy conductivity to
eddy viscosity. This rutio of the scaling lengths is said by Reference 2-7 to be either constant
with stability near unity or at lez.t a function only of Richardson’s number. Note that a
constant ratio with altitude, which Reference 2-7 argues is the conclusion of most
investigators, implies a ratio between the mean wind and potential temperature that is
invariant with altitude. That is, the normalized mean wind and temperature profiles are
identical.

The nondimensional altitude may be written in terms of the more readily measurable
Richardson’s numbcr using the log-linear mean wind profile:

a0 —
h_ & o0 _kh VW _ .
U LU R (1+a W)
[y 2 U*Oah
(aV )
oh

where @' has been developed by multiplying a by the ratio of eddy conductivity to eddy
viscosiiy so as to make a’/2' equal toa/R.

The resulting expressions for Richardson’s number and nondimensional altitude are

R. =——hB='--—'7
i ST+ hk
.
W= TR,

The Richardson’s number equation predicts that stability or instability will incre~se with
increasing altitude. For very small Richardson’s numbers (or small h/f', an adequate
approx:imation is

W2 =R;  |R; | very small
Using this approximation further restricts the region of validity. The resulting wind profile
becomes

- Us h +2z
Vw __.Q [In 0 Ri] , IRil very smajl
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B Note that the nonlinzar cquations restrict Richardson’s number to
R<L

g i al

o

The constant of proportionality, @’, has had different estimates attributed to it. For
unstable conditions, Reference 2-7 argues for a value of 4.5 but notes that other
investigators have estimated 4 and 6. Reference 2-26 states that a’ = 4.5 within a standard
error of 10%. An original estimate by ™onin and Obukhov of 0.6 is discounted by
References 2-7 and 2-9, which argue that it was measured at sufficiently nonadia® “tic
conditions that the nonlinear terms in the Taylor series expansion were significant.
Reference 2-9 quotes values of 3 and 4 obtained from different investigators.

E’
E

For stable conditions, Reference 2-23 recommends a’= 7 but notes that other studies have
found values from 2 to 10, although the ranges for application were not qualified. Reference
2-26 has found &' = 5.2 for stable conditions but notes that this may not be sufficiently
different from the unstable estimate of 4.5 to warrant differentiating between them.

The restrictions for applying the linear part of the log-linear profile are measures of the
linearity of the universal function, ¢(h/?). Restrictions appiy directly to h/2 and indirectly
to Richardson’s number. There is a maximum altitude restriction that becomes more severe

SN as the deviation from an adiabatic lapse rate increases at a fixed altitude (1%’l becomes
smaller).

TP T R PRSI

Reference 2-7 restricts the log-linear profile to unstable Richardson’s numbers more positive
than -0.03, a number agreed with in References 2-9 and 2-26.

g

For stable conditions, Reference 2-7 restricts positive h/2' to 0.3 or Richardson’s number to
0.1. Reference 2-23 permits extension up to a Richardson’s number of 0.14, only slightly
below his estimate of the critical Richardson’s number (1/a’'). Reference 2-7 states that
there is no simple relationship for the mean wind with 1/’ for conditions more stable than

h/2’ = 0.3. A more recent study (Ref. 2-26) disagrees and finds the log-linear profile
accurate up to h/g' =1 for a’= 5 (R, = 0.16).

E

2.3.4,3 Extension from the Log-Linear Profile

The data on Figure 2-9 indicate that a linear representation of the universal function ¢(h/%)
is not a good one for moderately negative (unstable) h/R' (h/2' < 0.03). Additional
solutions for the velocity profile at larger levels of instability but with minimum instability
restrictions are present2d in References 2-7 and 2-9. Of more interest, however, is a solution

that can be applied within a wide range of stability and instability, allowing application to
relatively high aititudes.

References 2-7, -9, -15, and -25 present an interpolation formula which has shown good
results for matching characteristics over a very large range of instability. The interpolation
equation, called the “KEYPS” equation, is given by

4 Th 3

i =1
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where s is the nondimensional wind shear,

As was shown for the logarithmic profile, the definition of the scaling length, 2’ permits an
identity between the nondimensional altitude and Richardson’s number:

h/2 =R;s

Substituting this identity into the interpolation formula provides the following equation
for shear:

an _ Ux()
oh kh(l _7'Ri)”4

Using the sume two equations but eliminating s instecad provides

h Ri

v Ry

Both of these equations reduce to the log-linear forms for very small levels of instability
provided 7' = 4o, Reference 2-7 also indicates good agrecment with the form

1
v
(1-Frp'/2

attributed to Holzman (Refs. 2-7, -9, and -25) for small Richardson’s number and the law

Wy 43

— ~

dh
attributed to Priestly (Refs. 2-7, -9, and -25), for strong instability.
in keeping with its recommenuaation for a’ = 4.5, Reference 2-7 recommends Y’ = 18.
in order to integrate the shear to obtain the mean wind profile, Richardson’s number must
be expiessed in terms of altitude, a relationship that requires the solution of a fourth order

cquation. The mean wind profile must consequently be found by numerical integration.

The form of the resulting mean wind profile proposed in Reference 2-7 is given by:

'"(hz:) Z0) + r(%-)l

0

Vw=T
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where the universal function f(h/Q') corresponds to the non-constant terms of the Taylor
series expansion of the universal function ¢(h/2') and can be found from the shear equation
by ¢

-h/®’

= 28 Ly
0
where
b\ kh Vw
[ u.o ol

The function f(h/®') is shown graphically on Figure 2-10 for the representation

o1
SRR I

R-
h/g' = ——J—r,z
/ (1 "7'Ri)

and is taken from Reference 2-7. This curve has been fitted by an equation in Reference
2-15 given by

B\L [ 1ok }-0674 = C678 In (~100 )
'y ¢
for R, <-0.01.

An extension to strong stability is provided by Webb in Reference 2-20. Webb first argues
that the log-linear profile holds for h/2' up to unity. For h/f' greater than unity up to
R; = 1, Webb finds the mean wind shear to be given by

an lho
S S5 (te) o (+a'>hiR 31

for a' = 5, The corresponding expression for Richardson’s number is given by

Ri=pl= |, (1+er>h2 > 1).

The resulting mean wind is found by integrating from the altitude h; where h|/2’ =1
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Vwh) -Vy(h)) =—l-:9-(l +a') [In(h)-Inthy)| , h S>>z

Uxg .
=% (1 +a’) In(h/¢)

Thus, the change of velocity from h is a pure logarithmic function of altitude. Substituting !
for Vy(h,), i

u hy+z h
Tyt =252 | e dgh - 1)
Vw(h) m [In % +flz7 =1

! h , b '
| f(7)=a 2 for Ry >0,h/L'< |
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the mean wind cquation becomes

u hy +z
vw=—?[(l+a')ln(h/il')+ln( L0

)+ a'] . he 2 |

20

or

&

—_ U
Vw = [Inhfzg) + o+ arlnhR)] . by’ > 1. b3z

i

i\ L

In terms of the universal function from Reference 2-7, !

f(h/2')=a’'+a’'In(h/R")

2.3.4.4 Deacon Wind Profile
There has been an attempt by Deacon to model the mean wind shear profile for all stability
conditions with a single explicit equation. The form of the equation is given by

an 'ﬁ
5h - Ch™F (Ref. 2-27)

For low altitudes where C and g are independent of height and depend on stability:

B > 1, unstable (Ri <0)

B = 1, neutral (R,;=0)

B < 1, stable (R; >0)
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The mean wind profiles are given by (Ref, 227

~—

for Vw= Qath= zg.

The assumptions of this profile, specifically the independence of B with height for
nonadiabatic conditions. have been tested in Reference 2-27 and have been found to be
invalid.

An independent check on the dependence of B with height is provided in Reference 2-25.
There it is said that Deacon’s gis given by

Using the interpolation formula,

. v

a relationship between Richardson’s number and g is derived:
R; = (1 -B)/(1 -36)
i 4

Thus, if g were independent of height, so must be Richardson’s number, in conflict with the
results of the interpolation formula and the log-linear profile,

2.3.4.5 Extension from the Power Law

The empirical power law,

Vy =( h )P
VRer  \Rgr

is extended to nonadiabatic conditions by altering the exponent with stability. Qualita-
tively, Reference 2-15 indicates that the exponent increases with increasing stability and
may approach zero for conditions of extreme instability,
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In Reference 2-25, the logarithmic of the power law equation is taken and derivatives are
performed to yield the expression:

_3nVy) ) Vy _ Uegs

P73 T Ty an KWy

where

By solving the interpolation equation,

54 -'7-%83 =]

for the nondimensional shear and integrating numerically for the mean wind, the exponent
that gives the same shear-mean wind relationship at a given altitude can be found for various
roughness lengths and levels of stability. Generally, there will be a different exponent for
each altitude, but for a sufficiently small -ltitude range the error from considering the
exponent invariant with altitude will be small. For Y'= 18 and altitudes from 11 to 46
meters, the exponents are shown as a function of the scaling length, f', and the roughness
length, zg, on Figure 2-11, as taken from Reference 2-25. Contrary to that qualitatively
described in Reference 2-15, increasing instability (decreasing 1/2') corresponds to an
increasing exponent, a difference that can be due to the altitude and altitude range
considered (see Fig. 2-8). The altitude and altitude range restrictions for applying the power
law to diabatic thermal conditions can generally be considered to be more severe than those
for applying the power law for adiabatic conditions.

2.3.5 Extension of the Mean Wind Profile to the Boundary Layer

The mean wind profiles investigated have becn for the Jower levels of the boundary layer
where accurate knowledge is most important. All the models presented, with the exception
of the Ekman spirai, continue to increase with increasing altitude, although at a decreasing
rate, so that the boundary condition of a constant wind at and above the boundary layer is
not met. If some estimate of the boundary layer thickness, d, could be made, then an
artificial restriction, Vy(h) K Vy(d), could be imposed. The artificial restriction would not
rclieve the overprediction just below the boundary layer.

Overprediction of the mean wind and mean wind shear near the boundary layer may not
present any problem for most cases. However, sufficiently severe overestimates could
prevent attainment of a glidesiope in tailwinds due to inability to produce enough drag or
to reduce thrust sufficiently or could prevent the attainment of a positive groundspeed in a
headwind at an airplane’s nominal approach airspeed.

More importantly, a significant overprediction of the mean wind at the boundary layer
implies the model becomes inaccurate at some lower altitude. When mean wind models at
nonneutral atmospheric conditions become inaccurate for large deviations from neutral
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stability (large h/f’), the altitude at which the model becomes inaccurate is lowered. When
the model is accurate to some h/R’, large deviations from neutral stability implies small £';
therefore, the limiting altitude becomes small. The position is taken that a model that
accurately describes the wind at fow altitudes and satisfies the boundary conditions without
artificial constraints is miore accurate at intermediate altitudes than a model that fails to
meet the boundary condition,

A mechanism for correcting the mean wind in the upper part of the bourdary has been

found for the profiles developed from dimensional analysis: relaxation of the constant shear
stress assumption.

2.3.5.1 Boundary Layer Thickness and the Altitude Dependence of Friction Velocity
The Monin-Obukhov similarity thcory starts with the hypothesis that in the atmospheric

boundary layer the properties of the turbulent velocity fluctuations are uniquely
determined by the height h and the following three scaling parameters:

%2
. . " - {1
Friction velocity, Us ( 2 )
. H
v » e ) ¥ = L e—
Scaling temperature, T u*Cp B
U*3C PT

Scaling length, 2

-_kg_&_

These parameters are implicitly independent of height. 7 is the horizontal surface stress in
the direction of the surface wind, pis the air density, H is the upward heat flux, C,, is the
specific heat of air at constant pressure, T is the average air absolute temperature, g is the
carth’s gravitational acceleration, and k = 0.4 is Von Karman’s constant. Additionally, upon
integration of the equations of motion, the small scale roughness length ) is introduced.

The roughness length is defined as the height at which the mean wind speed formally goes
to zero,

The thickness of the layer in which the Monin-Obukhov similarity theory applies is
determined by the height over which the fall in the shear stress and the change in the heat
flux remain negligible. This part of the atmospheric boundary layer is normally referred to
as the constant-stress layer. Reference 2-28 gives the thickness as approximately 30 feet,
while Reference 2-7 infers that the stress changes by less than 10% within a region having 4
thickness varying from 30 to 300 feet, depending on the magnitude of the ground shear
stress. It was concluded that the heat flux is essentially constant with height near the surface
except when the flux is smail.

Our interest extends beyond the constant stress layer up to about 1000 feet above the
surface. The atmospheric boundary layer may be regarded as the layer from which
momentum is extracted to overcome acrodynamic fricticn. Contrary tc classical ideas, the
thickness of the boundary layer is not constant. The effective range of the turbulent
momentum transport is controlled by the thermal stratification of the atmosphere.

L)
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Reference 2-4 states that during daytume over land, the top of the boundary laver is i.sually
defined by the existence of a stable layer beginning in the range between 1500 and 6000
feet above ground. Further, at night the stable air generated by ground cooling may suppress
the turbulent motion except immediately above the ground, the boundary layer then being
very shallow.

In the boundary layer above the constant-stress layer, the semiempirical analysis becomes
extremely complex. The simplifying assumptions of the similarity theory are no longer
valid, partly due to the decrease in the stress with height and the increasing effect of Coriolis
force. Additional complications are introduced by the effect of variable terrain roughness
and large-scale horizontal variations of tempcrature.

For heights over which the decrease of u, may not be neglected, it is suggested that the
mean wind speed iand shear remain proportional {o the local value of friction velocity,
u,(h), which may be estimated by considering a simplified form of the Navier-Stokes
equations of motion.

If 7(h) is the shear stress at the height h then let
[us(h)]? = )

Assuming that the velocity vector and the shear stress vector are parallel at the elevation h,
then from Reference 2-9

alu,(h))2

3h " fGsina
where u,(h) is the value of the friction velocity at the height h, f is Coriolis parameter, G
is the geostrophic wind speed, and a is the angle between the geostrophic wind vector and
the wind vector at the height h. When the surface wind blows to the left of the geostrophic
wind, a is positive. At the surface a=ag and at the top of the boundary layer a = 0. Near
the surface [u,,,(h)l2 may be expanded in a Taylor series about h = 0 and a=ay.

2
[ua()]2 = [u,(0)]2 - hG sin ag - " 1G cos g 3 .

+ higher order terms.

According to References 2-4, -7, -9, and -29, the term [da/dh] is small in the lower part of
the boundary layer, therefore neglecting second and higher order terms in the expansion

G sin ao "
uy(h) 2u,0) |- h

(u,.(O)l2

2 g s
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This expression is identical to those derived in References 2-4 and 2-29 and similar to the
one derived in Reference 2-9. The cross-isobar angle ay varies between 15° for very unstable
conditions to 35° for very stable conditions. Reference 2-4 lists

sinag = 0.3

as a typical value and reports that observations give
[Gluy (@))% =103
Selecting G = 60 feet/sec and assuming 45° latitude, then
fa104
and

Y
u(h) = uy(0) |1-0.5+ 1030 *

where h is measured in feet. Given the specified conditions, this formwula predicts the
following decrease in u, with height valid for the lower part of the boundary layer:

Height, ft 100[u,(0) - v (M)} /u(0)
50 1.0%
100 2.5%
300 8.0%
1000 29.0%
2000 100.0%

The variation of the cross-isobar angle a with height is assumed to be negligible in the laycr
under consideration. However, as the height increascs the formula will tend to overestimate
the decrease in the friction velocity, because the effect of the variation of & in decreasing
the shear correction is not considered in the formula.

A second derivation of the altitude dependence of friction velocity is obtained by a Taylor
series expansion about conditions at the edge of the boundary layer.

At the edge of the boundary layer the distributions of velocity and shear stress smoothly
join the flow aloft, where 7 =0, Vw =G, and a = 0, everywhere independent of height. This
requires the first derivative of the shear stress to be zero. Thus, a simplified expression for
u, (h) may be obtained by expanding [u, (h)]2 in Taylor series about h=d and a=0
where d is the thickness of the boundary layer.

a2
(s} 2 = (uy@)2-(h - d) G sin o - L58) rca‘!gld
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+ higher order terms. Thus

G da

(0,012 = - 15 &F | (h - d)2

Also

. da
sinot = - (d-k)
aﬁ‘d .

Reference 2-9 reports that the quadratic dependency of the shear stress on height and the
linear distribntion of sin a with height have been confirmed by observations. The quantities
[da/dh|yq} and d must be determined to complete the solution. Reference 29 postulates
that the expressions may be obtained by assuming that the upper profile is everywhere
determined by the asymptotic form and thus in the overlap region of the lower and higher
profiles as well. From Reference 2-9

)
sina0=ad-l$|dd 107-—%——
Thus
. u,(0) h
sina = 10. G (l-d—)
and
uy(h) |
u,(0) [ u,.,(O)] ( "-

Reference 2-9 makes this expression satisfy the boundary conditions at the surface, i.e., for
h =0, u,(h)/u,0) = 1. Hence,

2 (1.
t1,(0) d
Since
5.35 ‘::0) !
and
d=C UF(O)
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then
i
¥
d u*(O) H
5.35f N
and ;
da f
= =.5 2=
an|y=>72G
Substituting for d ;
!
uy(h) II 5.35 b |
1,(0) 2 0,(0) :
Assuming !
sin o = 0.3
then
G =32
) u*(o)
which is in good agreement with the value
5
G _|° 3
=10
u,(0)

quoted carlier
Selecting G = 60 feet/sce and assuming 45° latitude as before,
f =104
and
up(h) = u,(0) [1-0.286+ 1031

where h is measured in feet. Given the specified conditions, this formula predicts the
following decrease in u,, with height valid for tive upper boundary layer:

Height, ft 100[{uy(0) - u,(h)] /u,(0)
50 1.5%
100 2.9%
300 8.6%
1000 28.6%
2000 57.2%
3500 100.0%
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The expressions for the asymptotic behavior of the shear str:ss near the ground and at the
upper edge of the boundary layer agree very well when both are extrapolated to the lower
midrange levls in the boundary layer. It appears that the high Jcvel asymptotic expansion
will give good results over most of the boundary layer, excepi for perhaps at the extreme
lower part where the low level asymptotic expansion will give better results, The indicatioas
are that the latter method will overestimate the decrease in u, by a considerable amount at
levels higher than one-third the boundary layer thickness. It should be noted that for the
given geostrophic wind and relationship between the latter and the surface stress, this theory
predicts a boundary layer thickness of 3500 feet. This is in good agreement with
atmospheric measurements performed under similar conditions (Ref. 2-9).

2.3.5.2 Modification of the Mean Wind Profile From Similarity Theory

Mean wind profiles from dimensional analysis are obtained from

aVW Uy
Sh " kM)

Formerly, it was assumed that

u, =u,h=0)= Ueg
A zero wind shear at the boundary layer is obtained by recognizing the altitude dependence
of friction velocity that provides for zero friction velocity at the edge of the boundary layer.

Using the expression developed from the Taylor series expansion about conditions at the
edge of the boundary layer.

h
U‘ = u*o( l 'a‘)
the expression for the mean wind shear becomes
LYY U\ u u
——1 = —i —:-D Y = -._h_ _*Q [
: ("*o) omigy=(1-4) =Dow/e)

The corresponding equation for boundary layer depth, d, is

For a 40° latitude, the Coriolis parameter, f, is such that

d=2000 us_ ~ft
0
Accounting for the variation of shear stress with altitude ensures that the wind shear goes to
zero at the edge of the boundary layer, as it should to be compatible with the idealized
description. At low altitudes, where h/d is small, the previous equation fer the
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nondimensional shear is unalter.d. Reducing the shear at altitudes where it is already small
is inconsequentiai, but reflecting the reduction of the shear on the wind speed cau lead to a
substantial reduction in the high altitude wind speed.

No justification for incorporating the shear stress reduction in the shear profile has been
found in the literature. It is merely presumed that matching requirenments at low altitudes
and at the boundary layer will provide better results at the intermediate altitudes than just
matching requiremients at low altitudes and extrapolating to high altitudes.

The integration of the shear to provide the wind profile is performed in Appendix 2A and

provides:
v _“___ml h+zo> LL h)
Wo% ™ J7d \ed

The two parameters of the function f(h/f'. h/d). which represents the contribution of
nonpeutral atmospheric stability to the profile, are separable and the function may be
describable in terms of the constant shear stress tunctions:

hr

- -4 el o
- 1(-!}1)-(%‘% hg [¢(s)-1] dg. 1/2< 0
h/f'

[m)- 1] dg, 1/2' >0

3-8 J

or

-h/R'
() - ot (- ">+ x;,’;;) I s e<o
h/R'

1}

-
——
=i=
—

-

l
V

h/sz' f f(£) dg. 1/2 >0

For stable conditions, explicit functions are derived in Appendix 2A. For unstable
conditions, the functions are derived by numerical integration.

The mean wind equations may be alternately defined as
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The function f(h/®') is identical to that used for the constant friction velocity profile.

The function g(h/f’) describes the reduction of the wind due to the decre.se of shear stress
with increasing altitude. For neutral stability, g(0) = 1. For lcw altitudes, where h/d is very
small, the mean wind description reduces to that for constant shear stress.

Denvations providing modified expressions for the particular conditions of neutral stability
(¢(h/2') = 1) and near ncutral stability (¢(h/2') = 1 +a’h/®), arc performed in Appendix 2A
and provide the following expressions:

N-utral stability: h/2 =0,¢(h/2') =1

_ U h+z
__0 0\ h
VW - k [ln( Zo ) --a-]

For low altitudes, h/d = 0 and the logarithmic profile is obiained.

Near neutral stability: ¢(h/2)=1 + a'h/2

Us h+z
-0 0\ h, . h 1 h
W ‘"(‘—zo“) gt "i"(“ia')]

For low altitudes, h/d == 0 and the log-linear profile is obtained.

<

Appendix 2A also provides a derivation for the stable profile represented by ¢(h/R') =1+ '

for h/Q' > 1:
Ueog( (h+z
5 =_20 0 , h\ix ' 1
Vw = m ln( %o )+a [l +In (2,)]-3-[1 +a '2—_(h/2')]}

To prevent negative friction velocities from occurring for h > d, an additional constraint is
imposec:

V() = Vyd) forh»d

The effect of the altitude variation of shear stress 15 negligible for unstable conditions but
can be appreciable for stable conditions, as shown on Figure 2-12.
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5‘: 2.3.6 Selection of Mean Wind Description

E‘f The major analytic descriptions for low altitude have been provided: from these, a

3 description for specific application to the approach and landing mancuver is to be selected.

s

{ The critical area for the evaluation of aircraft motion during approach and landing is at and

Ef\ near touchdown, where success or failure of the maneuver is determined. Here, accurate

g correlation of airspeed with ground speed must be made to avoid large touchdowrn

i dispersioas. This region requires very accurate control of rate of sink. airplane attitude, and

é angular velocities to avoid structural damage. At higher altitudes, greater tolerances on

& aircraft motion can be accepted as the consequences are less.

Aircraft motion at or near touchdown is not solely dependent on the conditions in that

region, but is also a consequence of conditions experienced before that region is reached.

.,% However, it may be reasoned that the effect of conditions at a given altitude on the

3 X touchdown performance are inversely proportional to altitude: what happens high above the

4 ! ground has less effect on the touchdown than what happens at some altitude nearer the

: 5 ground. Thus, the first requirement for the description selected is accurate representation at

Tg f the altitude corresponding to that at touchdown (height of the acrodynamic center above

i ’ ground at touchdown). Then the descriptions are weighted according to their accuracies at |

£ \ increasing altitudes. This ceffectively rules out the Floman spiral, whose validity at any ‘

: ’ altitude is questionable but which is most descriptiv 1+, wind conditions at the top of the ;
! atmospheric boundary layer. ,;
: If thermal conditions were restricted to adiabatic conditions. the choice would be between '

the logarithmic profile and the power law. The literature argues that the power law has the |

; simpler form, but this cannot be accepted for simulaiion applications, Either requires a 1

series approximation or a table lookup for digital simulation and a table lookup for analog
simulation. The power law has been seen to be an approximation to the logarithmic profile
and deviates from the fogarithmic profile significantly at higher altitudes. However, the
logarithmic profile may be suspect at these altitudes. and the difference at higher altitudes
may have little impact.

A decision on whether or not to restrict thermal conditions to adiabatic conditions shall not
be made at this point. Rather. a description is sought which accounts for nonadiabatic
conditions so that their significance may be evaluated. Descriptions accounting for such
effecte provide for an increase in the magnitude of stubility or instability with increasing
altitude (bat not a transition between stability and instability with changing altitude).
Conscquently. a restriction on the range of stable or unstable conditions results in
restrictions on the maximum and minimum altitudes to which the description iy be
applicd. An approach and landing from 1000 feet in virtually any condition except for '}
adiabatic conditions will result in passing from strong stability to slight stability or stiong {
instability to slight instability  Hence, the description must be continuous over a wide range
of <ability and instability. This =limipates the lop-lmear profile for instubility. as well as
perhaps for stability and other models restricted to small ranges of stability conditions, such
as the law attributed to Priestly. However, it does not eliminate combinations of
descriptions. provided stich combinations provide a total description that is continuous with
stubility.
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The Deacon profile satisfies these requirements mathematically, but it implies constant
stability with altitude, a condition found empirically to be invalid. The power law by itsclf
does not have a well-defined description of the exponent for various stability conditions and
surface roughness. Such an exponent description can be obtained by comparison with ciher
wind descriptions, such as was done on Figure 2-11, but the altitude range for accurate
application is too restrictive.

A description that best satisfies the requirement for necutral and unstable conditicns is the
KEYPS ecquation, which apparently agrees well with restrictive models tor regions of
instability. For stability, the log-linear profile is well accepted for limited Richardson’s
number. The only model available for strong stability is that from Reference 2-2:5. which,
although admitredly titted to data with considerable scatter, provides continuity with the
log-lincar profile. The data scatter about the strong stability description is not a particular
concern as probable occurrences of strong stability are at higher altitudes.

The combination of descriptions just selected is summarized as follows. using the universal
function f(h/2") for each of the descriptions:

_ U*O h +ZO ,
Vw— S [ln( 7 ) + f(h/Q )]

For R; < 0:

b = —
] =
(1-7Rp}4

f(h/¢’) is given by Figure 2-10
For Ri >0 h/2'< 1

R;

WE TR

f(h/¢')=ao' h/¥
For R; > 1/1+ac, he' > 1:

WY = +a)R;
f(h/2') =o' + a'In(h/¢)

For continuity, Y’ =4 a’

.*Wm
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The combined relationships for R, and h/®' and for defining (h/®') are presented graphically
on Figures 2-13 and 2-14, respectively.

Low altitude winds are probably generated from the geostrophic winds, but the relationship
is not clear —-the geostrophic wind data are not well documented, and the geostrophic wind
has little physical significance. A more meaningful height from which to extrapclate winds,
and a height for which more wind data arce available, is the tower height. There is a present
effort to standardize the tower height at 20 feet and this is the height that will be used. Not
only shall the mean wind be specified at 20 feet, but also the Richardson’s number, needed
to determine the scaling length, €', and, in conjunction with the mean wind at 20 feet, the
constant ux 0/ k.

Given the Richardson’s number and the mean wind at 20 feet, the constants are found by:

U*Q _ -V-zo
k 20+7z 5 (Fig. 2-15}
In('—,'-'g + f('#)
1.0 ¢
0.05 R,
( 20
— . R <0
R. y1/4 20
(-7 ,20)
¢ = {005 20
T &R + Ry Z 0 <
"% Rigg 20
N 00S (e Ry L 2031 (Fig 216)

Note that the constants are calculated before, not during, the sismulation.

Still remaining are the specifications for roughness leagth and «’. The roughness length
could be specified for cach particular airport and would perhaps be a function of wind
direction, di:tance, height, scason, and wind speed. However, the problem at hand involves
“average” conditions for all aitports, and a number representative for all the above factors
for the “average” airport is needed.

The roughness length selected is 0.15 feet, partly because that number appears to
qualitatively represent surface conditions in the vicinity of the “average™ airport, as scen by
Figure 2-7, and partly because that number is used in an existing British Aeronautical
Review Board (ARB) autoland certification specification,

It is Yikely that the “open airport” roughness fength of 0.01 feet from Reference 2-14 is too
small, since few airports qualify completely as being “open™ due to the presence of many
aircraft and structures on and around the airport. On the other hand, it is unlikely that the
average roughness will correspond to that for the surrounding structures, Airports tend to be
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aligned to the prevailing wind and, due to operation procedures, large down-runway
components will be headwinds. From a conversation with Dr. Panofsky (coauthor of Ref.
2-7), the internal boundary layer dissipatcs after about a mile. Since most runways tend to
open for more than a mile, and using a one-in-ten slope for the downwind rise of the
internal boundary layer from the terrain discontinuity, it may be concluded that pure
headwind approaches will have a roughness dominated by the airfield. Tailwinds, at lower
wind speeds, will have a greater roughness associated with the terrain along the approach
path, The greatest rrughness affecting the wind is likely to be for pure crosswinds: The
lateral displacements of obstacles are likely to be within the 1 mile specified. Roughness
lengths for pure crosswinds are altitude dependent, with lower altitudes providing smaller
roughness lengths approaching that associated with the runway. Since, for 2ircraft operation
the lowest altitudes are generally the most important, there should be a weighting in favor
of the smaller lengths.

A qualitative averaging of the vorious considerations does not indicate that a roughness
length of 0.15 fect is out of line. For airports where the surroi..:ding terrain is very rough,
the same arguments can be extended to support an effective roughness length substantially
les> than that associated with the surrounding terrain.

The constant o is selected as 4.5 for both stable and unstable conditions (to provide
continuity of the slope of f(h/2’) at adiabatic conditions), resulting in ¥'= 18. The main
reason for selecting 4.5 is the substantiation given by Reference 2-7. This number appears to
agrec reasonably well with estimates by other investigators.

The mean wind profiles that result from this description are show 1 on Figure 2-17. Stable
conditions are seen to result in more severe shears and higher winds above 20 feet, for the
same reference mean wind. However, since the wind is propagated from the geostrophic
wind, it might be expected that greater stability at the reference height will be associaied
with iower mean winds at the same height, and consequently, the differences in the shears
between stable and unstable conditions may not be so great.

Iy order to provide for a mean wind shear that disappears at the edge of the boundary layer
and an increase of the maximum altitude to which the model is accurate, a modification of
the wind and wind shear models incorporating friction velocity variation with altitude is
adopted.

Two models for the variation of friction velocity with altitude have been provided, both
derived using Taylor scries expansions. One, providing a quadratic relationship, is most
accurate near the surface. The other, a linear relationship, is most accurate near the
boundary layer. Either is sufficiently accurate near the surface of the earth where the effect
is insignificant. Thus, the linear relationship is selected as it provides a more accurate
description at higher altitudes where the decrease in friction velocity is more significant.

That is
u, =y (l-h)
.=
* d

where d is depth of the boundary layer.
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The depth of the boundary layer has been given by

U*O

4= 1070 s X

This equation is undoubtedly incorrect at the equator where the boundary layer is predicted
to be infinite, Since u, . can be related to the surface wind, it provides for less decay of
triction velovity for high%r surface wind conditions. Above the boundary layer, turbulence
due to the propagation of the geostrophic wind to the surface is zero. This does not account
for turbulence generated by convectional clouds, inversion layers, low level jetstreams, and
other phenomena that produce mean wind shears and heat convection at high altitudes.

The equation for the bounduiy layer thickness is more acceptable for larger latitudes. Most
of the United States and the majority of world airport activity lies between 30° and 50°
latitude. A latitude of 40° shall be assumed to be representative of United States operations.

Recognizing that wg = 7.2685 x 10- rad/sec,
d = 2000 ~ ft
Uy 0

u*o ~  ftfsec

Richardson’s numbers at 20 feet is expected to fall within a small range and hence the effect
of stability on boundary layer thickness is smail. However, the boundary layer is lineasly
related to the mean wind at 20 feet. For a 10-knot wind at 20 feet, the boundary layer
thickness is computed to be 2750 feet for adiabatic conditions.

The final form for the mean wind and mean wind shear models becomes:

an - u*n /k\ hw\ l_lw
E 0'4V2°(Vzo (' '7‘/¢(9')

h
¢(?\¥) given on Figure 2-18

Uy /k h+z I I I
_ < 0 Q lw w W
Vw = \’20( =v20> [h‘l( 20 +f ¢/ ~d g Q/"
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The function g(h/2’) has been obtained from {(h/2') and numerical integration according to:

/2’
hy 1 i
f(i') - GV f f¢)dg , 37 < 0
h 0
)
h/e'

mo 1 |
f(?) ‘(T/Q‘")f““"" F >0
0

and is shown on Figure 2-19.
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2.4 TURBULENCE

Lt lrs el

Wind shears will act to displace air particles vertically. If unstable atmospheric conditions
exist, buoyancy forces will tend to amplify the displacement. For physical systems, unstable
divergences cannot increase without bound. Produced by the wind shear and buoyancy
forces, turbulence is a mechanism by which increasing atmospheric instability is constrained.
According to Reference 2-1: “In turbuient air the mixing of hotter and colder air parcels
will tend to produce thermal equilibrium locally.” This does not mean that turbulent air
occurs only for negative Richardson’s numbers, but rather that the buoyancy forces must be
large cnough to remove energy as fast as they are introduccd by the shear forces for
turbulence not to exist on a self-sustaining basis. The ratio of buoyancy forces removing
energy (for stable atmospheric conditions) to the inertia (wind shear) energy production is
the Richardson’s number, and a value of one might be expected to specify the existence of
turbulence, However, as stated in Reference 2-7, “This does not mean that a Richardson’s
number of unity gives the criterion for the onset or disappearance of turbulence: an
instability or sume other source must first generate large disturbances; the value of
{Richardson’s number) then determines when they can be self-supporting.™

5

I S Y  TRL

There apparently is a Richardson’s number hysteresis effect determining the existence of
turbulence. This is explained in Reference 2-7: “Existing turbulence would not ordinarily be
expected to vanish at the same value [of Richardson’s number associated with the
generation of turbulence from laminar motion. ] since disturbances present are already large,

L1}

b A TR P kA 400 P SRS S LRSI T R

The vroduction of turbulence from luminar flow has been predicted by linear analysis to
occur ut Ry = 0.25, os reported in Reference 2-7. The same reference also notes that
wrbrlence is seldom found above R;= 0.2 in the atmosphere, and the existence of

Y

o e By

turbulence is related to the “critical”™ Richardson’s number, equal to 1/a’ where o is the
constant appearing in the Iog-lincar mean wind profile. Reference 2-7 provides estimates of
aitical Richardson’s number of from 0.14 to 0.22. !

Since turbulence can only exist under conditions of atmospheric stability, its discussion is :
not scparable from stability considerations; limiting consideration of turbuience to adiabatic i
conditions cannot be justified at this point. The classifications “‘stabie™ and “‘unstable™ as
applied to turbulence (i.e., its absence or presence) are not the same as for mean wind. In ;
this connection. “stable” and “‘unstable’ are related to a positive critical Richardson's s
number cather than to 0. The discussion of turbulence applies only for Richardson’s

numbers less tahn the critical Ri~hardson’s number. '

The equations of motion for turbulence have been develoned from the Navier-Stokes
cquations aud 2re presented in References 2-7, -9, and -30, among others, From obse rvations
relating to these equations. some physical characteristics of turbulence have been
determined (Ket. 2-7).

o Turbulence provides a transport of csergy from the generation of energy
mechanicitiiy and convectively to internal energy. The energy transport procuss
oceurs through a cascade of eddies of d ninishing size, which finally ends in
viscous dissipation.
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® Turbulence is three-dimensional and nonlinear: the transfer of energy from one

size eddy to another can only take place nonlinearly in three dimensions. ?

o  Turbulence is diffusive, much as the molecules in a gas. That is, a tagged point in a 13

! turbulence field will wander farther and farther away from its original location, i

& accounting for the transport of mass, moment, and heat properties. Turbulence ER

] . . . . . e e &

s transport of physical properties “is usually far more effective than the transport =2 .

é A . 87

g " due to molecular motion.” q g

E 2, o Turbuleice is 4 continuum phenemenon with a smallest dynamically significant } :

% L scale being much larger than intermoiecular distances or molecular dimensions. {

A S w

3 : e Turbulence is approximately an equilibrium phenomenon for homogencous o

3 § terrain, “Except for transitional p‘)criods. the local rate of change of kinetic energy u i

i is of the order of a few (m/sec)® in several hours while the largest terms in the qa .

: % energy equation are of [two orders of magnitude larger] in the boundary layer.”

: ?5 :

£ : The diffusive, continuous, and equilibrium characteristics of turbulence lead to the property A

4 T of homogeneity of turbulence in the horizontal plane over homogencous terrain, the i
; : condition that has been previously specified. That is. the average properties of turbulent f
¢ % motion arc independent of horizontal position, so long as we constrain ourselves to :
consideration of a region smaller than the entire turbulence fieid. “

The concept for the horizontal homogeneity of turbulence is not universally accepted, and
there has been considerable recent work based on turbulence consisting of local
concentrations of energy (Refs. 2-31, -22, and -33). However., the description of
inhomogencous turbulence can be understood by relating it to homogencous turbulence.

ot

P

The nonlinearity of the equations of motion for turbalence has prevented unique solutions
for given sets of conditions. As stated in Reference 2-7. “the uniqueness of the solution
seems likely: however. the solution appears (in the unstable regime) to be so sensitive to
minute changes in the conditions that we never know these finely enough to predict the
detailed structure of the {low.” As a consequence, the too! of ignorance, the statistical
description, must be used.

The starting point for describing turbulence is the specification of the statistical tools and .
description of their application. Even using statistics, a great number of assumptions must
be made fo achieve a description that can be appliced to practical problems.

"~

Upon identifying the statistical characteristics, their variations and the parameters causing
the variations need to be tound. For example, it is intuitive that there is a magnitude of
turbulence and a scale relating to the size of the turbulence eddies. The question arises as to
whether the statistical characteristics can be described deterministically or whether they, in
turn, must be described statistically.
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2.4.1 Statisticel Functions for Tu:bulence Description

Turbulence has been defined as the difference between the instantaneous wind velocity and
the mean wind velocity. We wish to deal with this difference only, which has thus far been
assumed to be a random process and to be homogencous (the statistical properties are
invariant with the location at which they are measured).

The most fundamental statistical property is the arithmetic mean or average. However, the
mean may be taken with respect to many paramcters. As stated in Reference 2-7, .. . in
measuring wind velocity, we can speak of the average of wind velocity at a number of
different times at the particular measuring station, or of the average of the wind velocity at
a number of different ploces at a particular instant, or of the average of the wind velocity at
a particular place, at a particular time of day during a number of ¢-currences of the same
weather conditions. This last is probably the most fundamental idea, the concept of an
‘ensemble’ of experiments.”

For example, assume that for atmospheric conditions constrained to be the same, a
turbulence component, u, is a function of time and location, and that N samples have been
obtained for the same conditions. Then, using < > to denote an ensemble average,

<uﬁhJ®>=(UNﬂuﬁn,n+uﬁn.n+~-+mﬁan

To determine the enscmble average for the entire population of samples, the limit as N- oo
is considered:

<u@H>= lim <y@tL.N)>
N =00

Two assumptions about the character of turbulence are introduced at this point. First, it
shall be assumed that the ensemble average is independent of the absolute time so that

<u(® 1)>=<u@>

Satisfaction of this assumption is called “‘stationarity.” Stationarity is said to exist when the
mean and higher order averages (averages of products of turbulence components) are
independent of the absoluie value of time, but not necessarily independent of time
differences. The second assumption is that time and ensemble averages are the same. A
process exhibiting this property is said to be “ergodic.” Reference 2-3 states that the ergedic
rroperty follows when turbulence is both homogencous and stationary. From the ergodic
property, we have

. - T/2
- . ->
<u(r)> =t(r}= lim u(r. t) di

T =%

where the ove-bar implies o time average.
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By definition of turbulence,

e

uA=0

This can be automatically assured if turbulence is considered to be the total wind measured
with respect to an axis sysiem attached to the mean wind.

RS S K el SRk g S T Mot SR ST L4

The mean value of turbulence is trivial, but it is only one of many averages that may be ]
taken. In general, averages may be taken of products of turbulence components and their i
derivatives which may be displaced in time and space from each other. The averages of these
products are used to evaluate interrelationships or correlations, und results of the averaging
process are called “correlation” functions.

The mean is also but one description defining the probability densitr tunction, a second
statistical function. Finally, the last statistical function of concern is the spectrum function,
which is simply the description of the correlation function in the frequency domain.

B R S AT SR R S U S AR R i

2.4.1.1 Correlation Functions

In general, a turbulence correlation function Rij(?l , T, t]. ty) may be defined as:

kR U S A N F 4Ly
3

Ri(T1. T ty, 1) =<u(T. )« w5, 1) >
(TR R ATRS R/ ALl A | 202
That is, the correlation function is the ensemble average of the product of the i and j
. .y - -+ .

components of turbulence measured at positions 1] and ry and at times ty and t,,
respectively. The correlation function may more generally involve a produci f uny number
of turbulence components but, for the purposes of this report, only the product of two
components will be considered. “Turbulence compornents™ is used in a very general sense
and includes space and time derivatives of turbulent velocities.

The correlation function describes the average relationship between two componeris, f two
components are ‘“‘uncorrelated™ for all time and space relatieaships, their correlation
function will be zero. If the two components are the same and are measured at the same
time and position, the correlation function becomes the “variance™:

Ry} 1) = <470 14)>= 07T 1)

Note that the attachment of the turbulence axis system to the mean wind alleviates the need
to subtract the mean from the total velocity to achieve the variance.

More generally, the correlation fuaction of two different components evaluated at the same
time and point in space leads to the covariance:

le(l-i' l|)=<lli(?|, (I)Uj(?i. t|)>=(»"]2(?l. tl)
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The correlation function can be simplified considerably by invoking the assumptions
previously made:

o Homogeneity: The statistical properties of turbulence are independent of
position. Thus, if 15 = ﬁ + g’ where 'g’ is the displacement vector between the
components,

A G R T T R N LS Dl

Ry 75 1. 12) = Ry@, ). t2)

i

it S

k3,

®  Stationarity: The statistical properties are independent of the absolute time.
Thus, if ty = fy+7, where 7 is the time displacement between two components,

-p
Rij(?‘ tl. tz) = Rij(e’ T)
o Lrgodicity: Ensemble and time averages are identical; therefore,

T/2
=
Ri(£.7)= lim ui(-z t) uj(—r’+ E' t+7)dt
T==Tn

This equation is equivalent to saying that for specific combinaticns of relative time and

space displacements of the two components, the correlation function is found by averaging ;
over «ll time. When time averages for all combinations of relative displacement and time 3
have been found, the composite of all the averages provides a correlation function as a ;
function of relative space and time displacement. ;

.

]
S B SRR SRR PRI
"

E ! If the two components for whose product the average is taken are the same, the correlation
function is known as the “‘autocorrelaticn.” Otherwise, it is referred to as the “cross ]
2 correlation.” The expressions for the variance and covariance reduce to:

e

¢ 2 —

B e A ait

and provide a means for normalizing the correlation function:

L)
4

Ri(E. 1)

A £
i

Ryj(E.r) =-5— %
g::~ E
ij $
. A j
b Note that Rij(O' 0O)=1. §
: For the apolication of turbulence to aircraft, an additional simplification may be made, %’s
, referred to as “Taylor’s hypothesis.” The essence of this hypothesis, as described in 3
e . . . . 2
Reference 2-3, iy s follows: “Airplanes fly for the most part at speeds large compared to %
i the turbulence velodities and to their rates of change. Thus the vehicle can traverse a 3
3 relatively lurge patch of turbulence in a time so short that the turbulence velocities have not H
] H
:
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had time to change very much. This amounts to neglecting 1 in the argument (T, 1), i.e., to
treating the turbulence as a frozen pattern in space. This assumption is known as ‘Taylor’s
hypothesis’. Its consequence is that

Rij(g T)= Rij(-g) ?

The application of Taylor’s hypothesis is of im~ ense importance for the ability to simulate
turbulence.

The correlation function has been presented perhaps abstractly without indicating its
relationship to the simulation of turbulence. Unfortunately, this relationship cannot be
described without completion of the turbulence description.

A considerable number of assumptions have been introduced to enable the correlation
function to be defined in terms of only the spacial separation between the two turbulence
components involved. These assumptions are not universally accepted and can be applied
only with restrictions.

Certainly, homogeneity at low altitudes is dependent upon homogeneous terrain. Homoge-
neity and stationarity require equilibrium of turbulence energy, which in turn is dependent
on the slow rate of change of atmospheric conditions.

Perhaps most restrictive is the application of Taylor’s hypothesis, which at least restricts the
minimum airspeed of aircraft to which it may be applied. Most certainly, it cannot apply at
zero airspeeds such us for near hover conditions. Reference 2-1 has concluded that the
Taylor hypothesis is valid for airspeeds greater than one-third the mean wind velocity in the
direction of flight, based on permitting a vertical turbulence standard deviation error of 20%
and a presumed “‘true’” space-time relationship.

Reference 2-7 indicates qualitatively that the Taylor hypothesis must fail to some extent for
large eddy turbulence contribuvions, associated with large scale vertical motion during
uustable conditions, as these eddy motions must remain fixed with respect to the ground to
some cxtent, Taylor’s hvpothesis implies that turbulence eddies must move with respect to
the ground at the nican wind speed.

1. shall be assaumed that the conditions required to satisty the assumptions made are met, for
the applications required, and that the correlation function is dependent on spacial
separations only.

2.4.1.2 Probability Functions

Such quantities as the variance obtained from the autocorrelation function provide a
measure of the average level of turbulence, but do not quantify the distribution of the
magnitude of turbulence velocities nor the likelihood of encountering 3 particular

turbulence level. The functions that provide such information shal' be referred to as
probability functions.
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Probability is simply the number of specific occurrences divided by the total number of
observations. For example, the probability that a function g lies between the values g and
gy is given by:

No. of observations where g lies in the region
<.l _isLsssgy
= gU; 7 Total number of observations

(1]

When the lower limit gy is allowed to approach -oo, the probability function is the
“cumulative probability.” or the probability that g will not exceed gyj. When the upper
limit, gyy. is allowed to approach +eo the probability function is the ‘*‘exceedance
probability,” or the probability that & will not be less than g; . Note that a probability car
never be less than zero nor greater than one. The exceedance probability is equal to onc
minus the cumulative probability and vice versa.

When gy; is allowed to approach gL the probability function is the probability that g will
equal gy, or the “probability of occurrence.” When g is a discrete function that takes on
only specific values in the region, the probadility of occurrence may take on nen-zero
values. If, howcver, g is a continuous function that may assume any of the values in the
region g; < £ < gy the probability of occurrence is zero as there are an infinite number of
values that g may assume.

For a continuous analytic function, thc above definitions are somewhat cumbersome. An
alternate approach is provided by Reference 2-7, in which an indicator function, ¢(gy , g), is
first defined.

P(gp.8) =

That is. the indicator function is unity when the function g is less than or equal to g, and
zero otherwise. This is illustrated on Figure 2-20. Now, the average of the indicator function
provides the riiative portion of time that g is less than g , which is precisely the cimulative
probability:

T/2
. 1
r :g<gL{ =¢|gL.g(t)I = lim T f ¢lgL.g(t)| dt
T 9 oo T

The probability that g lies in the region g) g gy can be found from the ¢ .mulative
probability:

{
i':L!L< g<gu‘ =P{g<gU: -P§g<:zL}

e
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RANDOM VARIABLE AND ITS INDICATOR FUNCTION

1.0 1.0+
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FIGURE 2-20.—PROBABILITY FUNCTIONS AND CHARACTERISTICS
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As previously stated, shrinking the region to zero (letting gy approach g ) will only provide
a probability of occurrence equal to zero for a continuous function. Rather, the ratio of the
probability to the width of the region, (gq 8y 1s considered as gyy approaches gy . This
amounts to taking the derivative of the cumulative distribution, and the result is called the
“probability density” function, g(g):

Ple<gyl -Pls<g |
Be=g) = lim Uil

g -
gy - £ UTEL
=4 py <g, |
g IESEL

Conversely, the cumulative probability is found by integrating the probability density
function:

L
! < | =
Ple<gy, Lﬁ(g)dg

Typically, the probability density function approaches zero for increasing large positive and
negative g, as illustrated in Figure 2-20,

The probability density function can be used to determine ensemble averages for single
parameter functions, as shown in Reference 2-3, by:

00

<g>= [ wopw d

L0

This equation is referred to as the “theorem of the meun,” and can be used to quantify
many characteristics of the probability density function. By letting g(§) take on varivus
powers of the parameter &,

g(£)= £n9n= ]v213v-_

.

the “momerts’™ of the discribution are obtained:
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<t> = f E0(%) dE , Ist noment
<g>= f £26(¢) dt , 2nd moment
<E>= £36(%) dt . 3rd moment

and so on. The first moment is identified as the mean, which locates the distribution. The
second moment is the variance, which defines the breadth of the distribution. All
odd-number moments refer to the symmetry or lack of symmetry of the :ctuuility density
distribution about its mean, with zero values corresponding to symmetry. Specifically, the
third moment is used to mcasure skewness, a normalized measure of the separation between
the mean and the mode. The fourth moment is used io measure the “kurtosis” or flatness
factor. Higher moments measure other characteristics and generally have diminishing
importance. Some of the characteristics of the probability density function are illustrated

on Figure 2-20.

The concepts of probability functions can be cxtended to joint probability functions.
Consider two components of a vector, gy and g5. The indicator function is defined by:

1,8 <21Lﬂnd82<gzL

’ )¢ (g 8 )={
$1 (glL 1) 92182, -52 0 otherwise

The joint cumulative distribution and the joint probability density functions are given by

! < }= , ,
P‘gl <g]L, B <8, é1 (B]L 81) 9> (t'gL 87)

2
9

= = =-——P‘g < 8 <

ﬁ(g| Bl B2 gzL) ag‘LagzL :l By 82 821

!
J
or

g2, blL
)
P’E] <g 8= 22L= = f {o B(gy. 87) dgy dgy
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Now, invoking the theorem of the mean, the correlation functions may be determined from
the joint distribution:

00 oo
Ryp=<g| 8 >= /f g1 87 B(8y, gy) dgy dgy

00 =00

For the special case when gy and gy are independent functions such that the probability
density distribution of one of them is not dependent upon the value of the other, the joint
probability density distribution is equal to the product of the individual probability density
distributions and the correlation function is equal to the product of the individual means:

8(g1,87) =B(g1) B(gy)
Rlz =<g|>< g2>
For two uncorrelated turbulence components, the correlation function is zero.

The most widely used descripiion of the probability density distribution is the “Gaussian”
or “normal” distribution. This distribution has great theoretical importance. Many other
distributions will asymptotically apsroach the normal distribution as sample sizes increase.
The distribution of sample means, no matter what the distribution of the population, is
normal, a characteristic provided by the “central limit theorem.”

Assumption of a Gaussian probability density distribution is convenient for developing
simple expressions for other types of probability functions, such as for the number of
exceedances per mile (number of times a given turbulence level is exceeded in 1 mile of

flight), and joint distributions between many possible combinations of turbulence
components and their derivatives.

For the simulation of turbulence, assumption of a Gaussian distribution permits the use of
relatively simple techniques of generating random or pseudo-random noise needed for the
production of turbulence. Analog simulation 1s heavily dependent upon turbulence having a
distribution that is either Gaussian or can be generated from a Gaussian distribution,
particularly when time must be scaled by large factors. Techniques are availabic for
real-time digital simulation of tusbulence having virtually any distributjons.

There is some evidence that turbulence probability density distributions are not Gaussian,
particilarly for very low and very high turbulence levels. Reference 2-34 states that
Reference 2-35 contains an analysis of all three gust components at both high and low
altitude showing that atmospheric turbulence is definitely non-Gaussian. The results indicate
that low altituge turbulence is more nearly Gaussian than that at high altitudes, but at all
altitudes the probubility density exceeds that of a Gaussian distribution for both small and
large values of gust +locities. Figure 2-21, from Reference 2-35, is presented ir Reference
2-34 in support of these arguments. The line labeled “modified Bessel” is the distribution
presumed in Reference 2-34 and is obtained by multiplying two random samples of a
Gaussian distribution.
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Reference 2-35 states that although a probability distribution of all turbulence is
non-Gaussian, *...the observational results are in accord with a hypothesis that the
turbulence is patchy and that the velocities are distributed locally in a Gaussian manner.” As
a consequence, a Gaussian representation of turbulence is justified if a patch of turbulence is
large in relation to the aircraft and the region covered during a simulation. The patch would
have a constant variance, all other factors remaining constant. The variance of turbulence
for all patches would be described by a separate probability density function. That is, a
Gaussian distribution of turbulence is justified for the simulation of a patch of turbulence
having a variance with a constant probability of exceedance. This is the standard procedure.

Even if turbulence patches are not sufficiently large, Figure 2-21 wonld appear to indicate
that a Gaussian distribution of turbulence is representative at low altitudes for all but the
very extreme levels, This, however, would require a variance for all of turbulence.

Modified

Bessel High altitude

Low altitude

-4 -3 -2 -1 0
x/0
FIGURE 2-21.—-TUREULENCE PROBABILITY DENSITIES
{EROM REF. 2-34)
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2 It can be shown that a distribution of several patches of turbulence that is non-Gaussian, as j
E: shown on Figure 2-21, actually supports the hypothesis that a patch of turbulence is
A Gaussian. For simplicity, it is assumed that all the world’s turbulence is divided into two :
: patches, one with a standard deviation of one and the other with a standard d-:viatios: of 2

two. The normal distributions for the two individual patches are p) and Py on Figure 2-22.
Also, assume that there is equal probability of being in either patch so that the probability
of being in one patch is 0.5. The two patches are mutually exclusive. That is. 1t is net
3 possible to be in both patches at the same time. For mutually exclusive events, tne
2 combined probability density function is given by

P=P) Py +Pyp)

=
|

probability of being in patch |

probability of being in patch 2

4
[ 3]
I

The combined probability density function is shown as (p| + p2)/2 on Figure 2-22.

The variance, for discrete samples, is given by

n n
z xiz z Xi2
2 _ = ~ il )
o -— - =
n-1 n :
where x; = jth sample deviation from the mean, This may be expanded into the standard
deviation of patch 1 having ny samples and the standard deviation of patch 2 having n, .
samples: 1
nj n2
> xll2 + > x212
9 _ i=l =1
gc = v
nl n‘

_ nlolz + 112022

The term "l/("l + n,y) represents the probzbility of being in patch 1 and the term n2/(n' +
v') represents the probability of being in patch 2,

0l= Pl 012 + P2022
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For the cxample, the combined standard deviation is ¢ =J 5/2. Substituting the combined
standard deviation into the equation for the probability density function for a normal

distribution,
1

X\
L o)
P= o '

to)—

gives the distribution on Figure 2-22 labeled p.

If the actual combined distribution [(pl + Pz)/2i is compared to the Gaussian dist-ioution
having the same standard deviation (P3), it is seen that the Gaussian fit underestimates the
actual distribution at both small and large amplitudes and overestimates the daciual
distribution at intermediate amplitudes, exactly the observation on Figure 2-21 moade by

Refercnce 2-34,

The non-Gaussian nature of Figure 2-21 actually supports the hypothesis that the velocity
distribution of a single patch of turbulence is Gaussian as do the assumptions of
homogeneity, stationarity, and diffusiveness, characteristics of turbulence vigorously

supported by References 2-7 and 2-30. Perhaps a non-Gaussian description of a single patch
of turbulence is best suited for the conditions where these characteristics do not hold.

2.4.1.3 Spectrum Functions

The spectrum function is by definition the Fourier integral of the correlation function. If
the correlation function is described in terms of a time displacement, the spectrum function
is described in terms of radians/time. If the correlation function is described in terms of a
spacial displacement, the spectrum function is in terms of radians/distance.

Consider a one-dimensional correlation function, Rij(E). The spectrum function is given by:
T it
=1 () o7l
=5, J Ry et
where £ = radians/distance. The existence of the spectrum function is assured provided the

correlation function vanishes as § =+ too.

By the inversion formula for Fourier integrals,

Rjj(f) = ‘!; d’ij(n) eiﬂf ds.
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When i = j, the spectrum function is called the **power spectral density,” or the “power
spestrum.” When is£j the spectrum function is called the *‘cross-power spectral density” or
the “‘cospectrum.”

When the corrclation function is for two turbulence components measured at the same
location, the integral of the cospectrum yields the covariances.

o0
) -
0;% = R;(0) = !o P5(8) d2

or,fori=j
” oo
ST Rii(O) = I (l’ﬁ(ﬂ) a2

Now, the physical significance of the power spectrum and cospectrum function is seen, The
power spectrum and cospectrum function provide the distribution of the variance (or
turbulence power) and covari‘z,mce with frequency. T%w uisits of the one-dimensional
spectrum function is (velocity)</rad/sec). The (velocity)~ term is analogous to power for a
unit mass.

The spectrum function is defined for both positive and negative frequencies, is positive
everywhere, and is an even function so that &(-£2) = #(Q2}. These properties are often used
in loads and ride qualities analyses to enable the definition of the “one-sided power
spectrum.”

o)

-00

o0
of ey da
9

o0

= ! bi(82) A2 B(R) = 2,(D)

That is, rather than integrating from -ee to oo to obtain the variance. the integral is
performed from O to eo and doubled. Definition of the s,ectrum function in terms of the
one-sided spectrum for the purpcses of simulation should be avoided since an erroncous
model may result, as is discussed later.

Reference 2-3 and others show that the application of the Fourier integral to a random
function results from reprasenting the function with a Fourier series over i finite region, say
from -A to A (the function is zero outside this region), and then taking the limit as the region
the function is defined for becomes infinite (A - 00). The need to consider an infinite
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region arises because representation over a finite region from -A to X will result in a periodic
Fourier series with period 2\, while the random function to be represented is not periodic.

Representation over 4 finite region results in a “linc spectrum” where the spectrum function
has non-zero values only «t discrete frequencies with the separation between the discrete
frequencies being inversely proportional to tie size of the region. Use of the Fourier integral
will in general attribute a non-zero coatribution to the variance at wavclengths approaching
infinity. Although this is not physically appealing, a finite patch of turbulence sufficiently
large will cause the contributions due to the larger wavelengths to be insignificant and the
frequencies at which the disparity exists to be far below the lowest frequencies of interest.

The spectrum function could alternately be represented by the Fourier teansform rather
than the Fourier integral. The power specirum function and the corresponding inversion
yormula would be:

e !o Ry(6) 15 q

_1Lf o)
Rij6) = 5= L e )

The Fourier transform and the Fourier integral spectrum functions are just related by 2:

q’ij =2n QFTij

The Fouricer transform is an acceptable means for producing a power spectrum, but the
Fourier integral is used by convention. To avoid possible misinterpreiation, any form
specified for a spectrum function should be accompanied by the equation for the
correlation function or the variance/covariance.

Reference 2-7 discusses alternate techniques for the presentation of the one-dimensional
spectrum function. The most direct method is a lmear plot of ®(§2) vs . This plot also has
the advantage of graphically presenting the contribution of each frequency to the variance
or covariance. However, several decades of frequency and a corresponding range of power
may be of interest, thus dictating the form of log (&) vs log (§2). The log-log piot has the
advantage of permitting straight-line asymptotic approximations but also the disadvantage
of distorting the contribution of each frequency to the total variance or covariance. The
form used on Figure 2-1, Q&(2) vs log (£2), combines most of the advantages of the other
two forms. Both axes are collupsed (assuming &(§2) decreases as | 2] increases) and since
Qe ()d (log )= ()Y, the contribution of each frequency range to the total
variance/covariance is represented. It may also be noted tnat a change in the units of
frequency (spacial frequency, ordinary frequency. circular frequency) leaves the quantity
Q$(2) unchanged.
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This far, only a onc-dimensional spectrum has been considered. where the nun:ber of !
dimensions 1efers to the number of parameters for which the corielation function and the
spectrum function are defined. The number of dimensions does not refer to the number of
turbulence components assumed to exist—there are always three turbulence components.
The more general case is when the spacial displacement defining the correlation functions is
a vector and that has three dimensions. The Fourier transform defining the three-
dimensional spectrum function is:

3ol F o2
03D = — = !o R;(8) ! d

or |

E _1 ¢7 ~i(Q2y & +825 7+ 3 £3)
3 05 .= 5 [If RiEr b &) ¥ de) aty ot

3 The inversion formula gives

ki

Fy i(2) &) + 829 &y + Q3 £3)
Rikr b= [ff 021,929 IR LA LTS 92, d2;

2

This formulation is compatible with the results of the assumptions made, but is not suitable
for simulation. Simulation requires that turbulence be generated as a function of time.
Taylor’s hypothesis provides a tool for converting only one spacial coordinate, that in the :
direction of flight, into time. The disparity between the three-dimensional spectrum and
3 simulation requicement: and the corresponding solution have been observed in Reference
2-30: “Although three-dimensional Fourier transforms are appropriate to a function of a
p- vector argument, the experimenter can make a Fourier analysis (by passing an electronic
; signal proportional to the velocity through a filter circuit, or wave analyses) with respect tc
s one space coordinate only. The resulting spectrum is a one-dimensional Fouricr transform of
4 the velocity correlation sensor, and is obtained from the spectrum tensor 0;-(5-2') by g
- integrating overall values of the lateral components of §.” That is, first the axis system of
g the turbulence is oriented so that §; and ﬂ] are measured in the direction of flight, or the
“refative wind axis system.” Then the three-dimensional spectrum function is integrated
; successively over the other two components of spacial frequency (825 and §23) to reduce the
three-dimensional spectrum to 4 one-directional spectrum:

_ £t (2 £+ 0
. { Rij‘£l‘£2)—.!°.[ ¥ii(§2), 2y) e el 2£2)dﬂl dQ2,

Mgl din

b

Rty

&)

"'ij(nl . 92) = two-dimensional spectrum
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Thus, the three-dimensional spectrum is reduced to the one-dimensional spectrum.

An additional spectrum of impo. tance is the “energy spectrum function™ which di%ributes
kinetic energy with spacial frequeacy (alsc called “wave number”) magnitude, §2 =

00
15 upy 2+ ugy® + “332] = f E(2)dQ
-00
2.4.2 Isotropic Turbuleace

The condition of isotropy means that the average functions describing the ficld of
turbulence are independent of direction of the axis system. As a consequence, in the words
of Reference 2-7, “...the spectrum functicn homogeneous in three spacial directions,
which is also isotropic, cannot be a function of the serarate components of the wave
number vector, for a rotation to the new coordinate system would change those. It can be a
function only of the length of the vector, for that is the only quantity characterizing §2
which does not remain unchanged under a rotation.” Isotropic turbulence exhibits spherical
symmetry, and the root mean square intensities for all velocity components must be equal.

It is generally agreed that turbulence at high altitudes is well represented by isotropy. It is
also generally agreed that low altitude turbulence is not isotropic. For example, in view of
the changes of wind shears and atmospheric stability with altitude at low altitudes, which
produce turbulence, it may be reasoned that averages taken normal to the earth will not be
the same as averages taken in a direction parallel to the earth. A justified question is: why,
when the concern is with low altitude turbulence only, is isotropic turbulence considered?
The answer is simply that theory for the general case of nonisotropic turbulence leading to
explicit forms of spectrum functions does not exist. Rather, low altitude turbulence spectra
are treated as extensions of isotropic turbulence.

2.4.2.1 Furdamental Correlation Functions
The fundamental concept for isotropic turbulence is the form of the correlation function.

Reference 2-30 shows that an isotropic second-order two-point tensor, Rij(?), must have
the form:

Rij(?) = F(t;§; + G(B)s;;
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where
¢ =|¢|
_fLi=j
5 “10,i#j
F(¢), G(¢) = scalar functions.

A seecond condition for the correlation function is continuiiy, or conservation of mass. For
incompressible conditions, continuity is assured if the divergence of velocity vanishes. In
terms of the correlation functions, satisfaction of continuity requires:

3 3R 3 3Ry
N _sgji(gpo 2 550=0  (Refs.2:7.2:30)
i=1 %% =1 %

or, simply
- dF(¢) | -
4aF(§)+ ¢ F: *‘-£G($) 0

Thus, the continuity equation relates the two scalar functions so that only one of them can
be independent.

The scalar functions F(§) and G(§) have been arbitrary, and as such have had little physical
significance. In an important sicp, two nondimensional correlation functions are introduced.
They are the noadimensional corre!ation_’functions for paraliel turbulence components
separated by the displacement vector, £, along and normal to the direction of the
displacement vector. The geometry of these correlation tfunctioas is shown on Figure 2-23.
The functions are defined by:

pry

Rpp(f)  <upM)up(® + £)>
5 = 3

A
[(¢) = Rppt¢) = ;

%pp” PP

A Run(d) <upnit) u ?+-g)>
o = Ryy(®=- NN . N N‘1
ONN UNN"

The functions f(§) and g(¢) are referred to as the “longitudinal” and *‘transverse”
correlation functions, respectively. It is important to note that f(¢) and g(§) do not depend
on the orientation of the displace:. ent vector; it is only reguired that they be measured for
turbulence components parallei and normal to the displacement vector. The general shape of
the fundamental correlation function is shown on Figure 2-23, as taken from
Reference 2-30.

SR RN A RS N P N OSSR

TRRET

AR
3

R




R R 2 R e R L A L

e

!

) e

gk e o NSRS LSS S S F A

184

VT AR SRR Bl X Y

TR A MRS R

=

uN(r +

up F-:—’{)

<up'(r’) uP-(r+ 5>

f(k) = Rpp l§i = Gop?

- - b ol
up ) uy(r + £ >

(§) = Ryn (8) =
gt NNE N2

1.0

f(E), g(¥)
{t3]

glt)

#

FIGURE 2-23.~FUNDAMENTAL CORRELATION FUNCTIONS {~80M REF. 2-30)

RN A ST BRI N A*«’WW%WMWE“WfWWma?’”M&%
<

H
¥




= RN G T R AR
Pt g e Gt S O L SRR S H VAT S ERTERS AT P SN PR P I ‘C{‘*’?;{é‘“{?"@@"} SR S b Eale !?’E&.g
BT T AR s =

LR e S RN ) e SN

Solving for the relationship of the fundamnental correlation functions with the scalar
functions using the general form of the correlation function yields:

f(¢) = Rg‘il F(£)£22+ G

;: g ag

Ri:(§)

pd) =4~ =56

: o

] F() _ f(§) - G(®)/o? _ f(8) - e(§)

:{ o2 EZ EI.’

% L AFE) =2 oy 1 [df®)_dg(®)
a5 N0 -8 + |- 48]
_L__(Q dg(§)
o2 d& T dE

Substituting these relationships into the continuity equation and solving for g(§) gives:

8y = f(£)+5‘”‘ )

Substituting for the scalar function into the equation for the correlation function gives

- 1
R;(&)= 02 [f—(%f(-a Eifj + a8 by

where

H Li:j
§ boo=
f % 0i#]j

Note that this equation specifies that cross correlations (R;; ije i#j) are zero for isotropic
turbulence.

Now, once the Jongitudinal correlation function has been determined, the correlstion
function for two turbulence velcaiiies at any relative displacement in an isotropic
turbulence field can be determined,

2.4.2.2 Interrelationships of Spectrum Functions

Arguments similar to those used to develop the interrelationships between tne fundamental
correlation functions can be used to develop interrelationships between spectrum functions.
The following development is taken from Reference 2-30.
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As the three-dimensional spectrum functions are a second-order two-point tensor, they may
be described in terms of scalar functions for isotropy:

6;;(SH = AR + B

where
a =gl
5. = 1,i=j0,is#]
1 0.i j

Using the relationship between the three-dimensional spectrum and the correlation function,

P, 2o -
f Gij(ﬂ)e'ﬂ'sdg

—00
the continuity equation
3 3R;; 3 9R;;
U= __'J.

can be expressed in terms of the three-dimensional spectrum function as
3 5> 3 -
Z Qioij(ﬂ) = Z SZJO,J(SZ) =0
i=) i=]
This form of the contiauity equation provides the relationship between the scalar functions:

B(2) = -92 A()

Using expression for the three-dimensicnal power spectrum in terms of the scalar
functions

v6;; () = % | Q2A) + 3B} | = BQ) = -Q22A9).

and the relationship between the cnergy spectrum and the three-dimensicnal power
spectrum provided in Reference 2-30,

E(RQ) = 420220,,(5)
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a description for the three-dimensional spectrum function is found in terms of the cnergy
spectrum:

h(ﬂ)

This equation now permits defining all the isotropic spectrum functions in terms of a single
scalar function, the encrgy spectrum, and is anologous to defining all correlation functions
in terms of a single fundamental correlation function. In particular, the one-dimensional
longitudinal and transverse power spectra are given by (Ref., 2-30):

Q
appi2) = 7 [ ( le 5
2

b

v

2
- i Ql w2 .
‘PNN(Q ry f ]+;§- —S%)df..
Q

. A . - - -
Subscripts P and N refer to directions paraliel and normal to the scparation vector, §. The
one-dimensional power sprctra may also be written in terms ol each other:

PO S S

. 1 1 ddpp())
»NN(8))=39pp(2]) -390 —_—&—ﬁl—

All cross spectra for velocity components paraliel and normal to the separation vector are
Zero in isotropic turbulence,

2.4.2.3 Integral Scale

As stated in Reference 2-3: “There is an intuitive notion of the scale of turbulence. Clearly
there are significant differences of ‘size’ between the turbulence in the wing boundary layer,
in the wake of the airplane, and the atmospliere itself.”

The paramerers used to define the scale of turbulerce are the “integral scales,” of which
there are two for isotropic turbulence. The integral scales are the areas under the
fundamental correlation functions:
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The implication of the integral scales is thut when the separation distance is norinalized by
the integral scale, the fundamental correlation functions become universal functions for all
scales of turbulence. That is, the functions f(#/Lp) and g(§/Lp) are not functions of §, Lp,
or Ly, alone.

The integral scales can also be seen to represent the average correlation distance as the lines
t= Lp and £ = Ly divide the areas under the longitudinal and transverse correlation
functions into equal parts.

As seen on Figure 2-23, the transverse correlation function crosses zero. This crossover point
will be proportional to the transverse integral scale, and the transverse integral scale can be
thought of as a measure of the distance between transverse components for zero correlation.

If the fundamental correlation functions are expressable in terms of integral scales, then so
are the spectrum functions. The frequency-dependent characteristics of the power specirum
functions will be inversely proportional to the integrai scales. in particular. the peak to the
right on Figure 2-1 occurs at a frequency inversely propoartional to the integral scale, and the
integral scale can be thought of as a measure of the dominant eddy size.

Just as the fundamental correlation functions are not independent, neither are the

longitudinal and transverse integral scales. Integrating the rclationship between the
corrclation functions,

) = ) + 5 482

from O to e yields the relationship between integral scales:

"
o0 (Y2 | l_,
et e - [
0

limEf(g)=0

t>00

By convention, all isotropic turbulence functions are defined in terms of the longitudinal
integral scale. Although the integral scale is @ parameter defined in terms of isotropic
functions, its use has been extended to nonisotropy.

2.4.2.4 Isotropic Turbulence Spectra Forms

Specification of cemponents of turbulence requires knowledge of the once-dimensional
spectra, as previously discussed. Specification of two- or three-dimensional spectra, the
energy spectrum, or the correlation functions will lead to the description of ihe
one-dimensional spectra.
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As the integral of the one-dimensional spectra provides the turbulence vanance, which is the .
same for 1l three components of isotropic turbulence, the one-dimensional », cctra can be
written as:

B(Q)) =0 G(R))

where

00
fG(.Ql)d.Q] =
-00

This form separates out the magnitude of turbulence, allowing it to be independently
specifiable.

If the fundamental correlation functions are universal when expressed in teems of the ratio
of separation distance to the integral scale, a universal description of the isotropic
one-dimensional spectra can be found to be

®{2) =02 G(L., L&)

where by convention the longitudina! integral scale is used in all the one-dimersional
spectra.

The objective is to establish an analytic form for G(L, L§2y), the one-dimcnsional spectia of
turbulence with unity root mean square amplitude. Theory has been able to establish
asymptotic forms for diiferent spacial frequency ranges.

At the lowest spacial freques. s, where cnergy is being added to turbulence. ihe
three-dimensional spectrum must be analytic and finite. Refeience 2-35 states that it has
been shown with a power serics expansion that these restrictions lead to a Q
proportionality of the energy spectrum at low frequencies. That is,

lim E(§2) ~ KQ4 (K = constant)
2,-0

This relationship leads to the one-dimensional spectra being invariant with frequency at low
frequencies:

hm &(32)) = C (C = constant)
Q]-*()

Faor one-dimensional power spectra equal to a constant, the ratio between the longitudinal
and transverse power spectra must be 2 as seen by the relationship between these two
spectra:
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where

<
2

dpp= C.ONN=

The constant variation of the one-dimensional power spectra is generally well a:cepted.
References 2-7 and 2-37 reject proposed analytic furms which do not contain this feature.

In the “inertia subrange” where turbulent energy is being transported to higher frequencies
without <nergy additions or losses. a variation of one-dimensional spectral energy with
§-5/3 has been derived by Kolmogoroff from similarity theory. This variaticn of the energy
spectrum also leads to the same variation of the one-dimensional power spectra. The Q-3/3
variation has been verified by numerous authors. Perhaps one of the most extensive
verifications has been performed in the LO-LOCAT study presented in Reference 2-37 from
which Figure 2-24 is taken.

L} A 5/3 variation of the one-dimensional spectra requires the longitudinal and transverse
components to be related asymptotically by the ratio of 3/4:

i 1., 4%pp
NN E‘PPP-';'QxTQI

ca/3

bpp

®pp 5 ¢
=_PP.3 -8/3_"PP 54 -4
‘bNN =3 r6QIC9‘ /3= 2 |'6¢Pp—34’PP

At very high spacial frequencies, where viscous dissipation takes place, References 2-7 and
2-36 report a Q-7 variation of the energy spectrum predicted by Heiscnberg. Reference 2-7
states that available data provide an exponential variation. The discrepancy is of no concern,
as the frequency of onset is far beyond the highest of interest for simulation (Ref. 2-37
assigns this region to wavelengths of less than 0.01 foot), Few power spectrum models have
attempted to model ts ;caion,

N e i W S48 WS A, ¢ Y R

In addition to the low and high frequency asymptotes, a frequency of transition from one
asymptotic character to the other is nceded. Ore technique is to observe the value of Ly,
at which the peak of £$(82) occurs.

s v Ve e e

As an example, the unity rn.s one-dimensional power spectrum

A(L

G(L.LQ =——-—-(_)-—___
( X (1 +aL§2y)5/3
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where a and A(L) are constants, satisfies the asymptotic characteristics. The constant A(L)
is found by requiring the rms to be unity:

T __aw Q) =2 AL) j'w 99 _ =3
" a0 iR

where
A=k
Thus,
7aL |
b=0"F ——— 7373
3 (1+aLqy)]/?

The greatest density of variance with frequency occurs wien d(§2y $)/dQ2; =0, or 2ypux =
3/2aL. The above power spectrum form couid then be written in terms of .y

]
_2'9'max

S/3
]
29max

If this form were accepted as that for the longitudinal spectrum, the transverse spectrum is
found from the previously discussed relationship,

<b=02

ddpp(2))
eNN(2)) = :l;_-{d)pp(ﬂ) e -—%}

8 .
1 +3(aly)
—p2(ak) (3T

The transverse power spectrum also satisfies the asymptotic requirements, but the maximum
of dNN oceurs at different frequences (2 = -0.244/aL, 2.3/aL). Hence, if the spectra are
written in terms of the frequency where the greatest variance density occurs, two
parameters (at least) must be used to replace the longitudinal integral scale.

The form postulated must be rejected on the basis that it does not provide power spectra
that are even functions, ®(2) £$(-£). ‘
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A much more satisfying form has been developed by Von Karman, who fitted the energy
spectrum with the equation:

Ac¥(Q/IRy*
17/6

E(Q) =
|1 + qigg?|

The one-dimensional power spectra and the corresponding fundamental correlation
functions that result are shown on Figure 2-25. That the Von Karman spectra satisfy the
asymptotic requirement for the one-dimensional spectra is shown on Figure 2-26. The
relationship between the longitudinal integral scale and the dominant frequencies is shown
on Figure 2-27, where dominant frequencies refer to those having the greatest contributions
to total Kinzetic energy or variance. Finally, the fundamental correlation functions, found
from the inverse Fourier integrals of the one-dimensional power spectra, are plotted on
Figure 2-28.

Reference 2-37 attributes an alternate form for the longitudinal spectrum to Lumiey and
Panofsky:

=2 A
dpp =02 —P—rs
PP s )3

This form, although meeting asymptotic requirements, does not p:ovide symmetry about
£2 = 0 and should at least be modified as follows:

A
I+ [(39)2

dpp = 0° l5/6

The primary difference between this form and the Von Karman form are found in the
intermediate frequencies, but these differences are small. The same form has been attributed
to Busch and Panofsky for the transverse spectrum by Reference 2-38. However, using the
same form does not satisfy the interrclationships between the longitudinal and the
transverse isotropic spectra.

Another form presented in References 2-7 and 2-38 and attributed to Inoue is given by:

2 Qg
$pp= (‘"")
N1+ qumer]*?

Although the Q-5/3 asymptotic is satisfied, the spectrum goes to zero at zero spacial
frequency and has a maximum at g = (4/7)§q. Due to the last characteristic, this form has
been discounted by both References 2-7 and 2-38.

A different approach to spectra modeling begins with fitting a fundamental correlation
function with an equation, then by deriving all the spectra from that equation. The most
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Von Karman Dryden
{From ref. 2-3) (From vef. 2-7)

Longitudin;l eorrelation/;unction:
_ /3 i3 1 \ L
He = i:‘(us)(al.) K1/3('EEI g = et

Transverse correlaticn functions:

o325 (2) Lo (D (8] w0 -0 [ 4]

Longitudinal one-dimensional power spectrum:

2 2
=0°L [——1—3]-573- =0L L,__l.__
d)PP m 1 +(OLQ1) Q)PP T {3 +(L-Q1)2]

Transverse one-dimersional power spectrum:

o2 (aL2,)? 0Ly 431042
b =02 1+ 830ty 5 l:_-—]"]
NN "7 |1 +al.i2)2] V16 o L&)

RS U R R A L P Rl b Ly S

Energy spectrum:

2L 94
2 (aLﬂ)" EI(Q}) = 80 (Ls2)
=55 0°L —_— _'—QJ"Q'
EQ) T3 l! + (aLQ)2l 17/6 ERE e

Definiticiis:
a=1 339
Iﬂlulﬂ,,u +9, ) + Qak |
d’PPand by such thata = [ oo Pppd Q4 = f_: Py 9824

L={:°f($)d £=2fo°°g(z)d£

Klls(aft_) and K, /3(5.)." modified Bessel functions of the second kind.

FIGURE 2-25.—VON KARMAN AND DRYDEN CORRELATION AND SPECTRA FUNCTIONS
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